Teaching Portfolio Extracts

This document contains teaching materials that I prepared for two courses
that I gave in the Department of Chemistry at the University of Natal at
Pietermaritzburg, South Africa. They are felt to be relevant to the applica-
tion because the processes of analyzing the subject matter and arranging the
facts and concepts in a logical way can be expected to be closely similar to
the corresponding processes involved in the teaching of mathematics.

The first course presents an introduction to chemical thermodynamics,
starting with the basic concepts of work, heat and the conservation of en-
ergy, and finishing with the law of chemical equilibrium. This includes a
favorable student evaluation of teaching that was conducted by the Centre
for University Educational Development.

The second course presents an introduction to statistical thermodynam-
ics, and was delivered to students enrolled for the Honours course in physical
chemistry. It embodied a new and original instructional approach whereby
the main ideas of a conceptually advanced subject such as this can be pre-
sented with a minimum of formal manipulations.



Second Year Physical Chemistry: Thermodynamics

Scope and Significance

The study of chemical thermodynamics at Second Year level is of crucial importance in the
education of those who intend to specialise in chemistry or cognate disciplines.

For the intending chemistry major, the most important general goal is the acquisition of skills
required for the quantitative description of the the energetics of physical and chemical changes.
The first central idea here is the principle of conservation of energy, most generally expressed
by the First Law of Thermodynamics, but in a specifically chemical context by Hess’s Law and
its various equivalent forms. The second idea is that spontaneous processes always proceed in
one direction, as summarised by the Second Law of thermodynamics. This leads naturally to
the concept of equilibrium as the eventual result of all irreversible processes, and the
description of such equilibria in terms of the Gibbs and Helmholtz functions. The most
important specific goal of a Second Year course is the derivation of the law of chemical reaction
equilibrium from strictly thermodynamic principles, as opposed to the kinetic arguments that
are typically used in elementary (First Year) courses.

More generally, the study of thermodynamics can be expected to enhance students’
understanding of the nature of energy, and chemical energy in particular. Since usage of energy
in some form or other is an inescapable part of everyday reality, many of the practice problems
involve application of thermodynamic principles to simple practical situations. As a result of
working through these problems, students will enhance their quantitative reasoning and
problem-solving skills, as well as their understanding of the underlying concepts.

The mathematical content in treatments of thermodynamics intended for students at this level
makes this subject almost universally unpopular. The Laws of Thermodynamics and the
properties of the thermodynamic functions are generally expressed by partial differential
equations, the significance of which is very unlikely to be appreciated by students who have
done only first-year mathematics. The traditional emphasis in such treatments is on the proof of
various thermodynamic formulae. As a result, students find it difficult to separate the physical
implications of these results from the purely formal manipulations required to obtain them.
These deficiencies are compounded by the fact that thermodynamics is usually taught from
textbooks on general physical chemistry that attempt to cover everything from chemical kinetics
to molecular spectroscopy and quantum theory. The amount of detail that can be devoted to the
most conceptually-demanding aspects of thermodynamics is therefore limited.

To counteract the limitations identified above, I have developed a self-contained course in
thermodynamics that presents the subject in a way that requires an absolute minimum of formal
manipulation with partial derivatives, and focuses instead on simple numerical calculations.

Background of Students

The students taking this course are assumed to have successfully completed Chemistry 110, the
physical component of which involves an introduction to the main ideas of atomic structure,
stoichiometry, properties of gases, one-component phase equilibrium and célligative
properties. Chemical equilibrium is also introduced in the context of reactions involving ideal
gas mixtures, acid-base reactions and solubility of ionic solids.

Students are also assumed to have done a first-year mathematics course introducing basic
techniques of integral and differential calculus. In connexion with the mathematical background
required for thermodynarmics it is to be observed that the functions requiring differentiation or
integration are considerably simpler than those likely to be encountered in the mathematics
courses.




General Aspects of Course Organisation

The course is designed to be given in 14 formal lecture periods. In addition to the notes taken
.during these lectures (which in general include working of numerical examples) students will
receive

d a brief summary (1-2 pages) of the lecture, in which the main ideas and important
formulae are highlighted;
Q a list of specific Leaming Objectives, corresponding to the different levels of cognitive

skill identified by Bloom (1965);

Qa a set of carefully-designed practice problems, individually cross-referenced to the list of
Learning Objectives;

Q complete model answers to all these problems. These are considered to be necessary
not only to enable students to check their answers, but also to reinforce by example the
basic quantitative skills involved. Such skills have an importance that extends far
beyond the limits of physical chemistry.

Synopsis of Content and Teaching Strategies
Lecture No. 1

In the first part of this lecture students are reacquainted with the basic physical concepts (such
as force, pressure, work, energy and power) that are fundamentally important to the
subsequent work in thermodynamics. The generalised dimensions and the relevant ST units are
also introduced. Basic manipulations with these physical quantities are illustrated by use of
simple examples involving calculation of pressure from force and area, average power from
energy consumed in a given time efc. The remainder of the lecture is devoted to introducing the
concept of a partial derivative, as a natural generalisation of the derivative of a function of one
variable, and illustrates the Euler ‘chain relation’ between partial derivatives of a function of
two variables by considering the connexion between the expansion coefficient, compressibility
and the derivative of pressure at constant volume.

Lecture No. 2

The purpose of this lecture is to introduce the principle of conservation of energy by
consideration of a simple mechanical system obeying Newton’s Laws, and to identify the
important properties of the mechanical potential energy function, viz., that only differences in
potential energy are physically significant, that these differences depend only on the initial and
final points, and that positions of equilibrium correspond to maxima and minima in potential
energy. The relation between quantities of heat transferred between bodies at different
temperatures is then introduced by consideration of several simple examples. Finally the First
Law is presented as a generalization of the principle of energy conservation that applies to
generation of heat as well as performance of mechanical work.

Lecture No. 3

This lecture starts by identifying the most important properties of the Internal Energy function,
particularly in comparison with the mechanical potential energy. The work involved in
changing the volume of a system is then introduced with specific reference to a perfect gas, and
the distinction between reversible and irreversible expansions noted. Consideration of special
cases of the First Law where either the volume or pressure is constant is then used to introduce
the Enthalpy function, and the corresponding heat capacities at constant pressure and at




constant volume. The expression for the difference in the heat capacities is derived, and
interpreted in terms of the work done by a substance in expanding against its cohesive forces.

Lecture No. 4

This lecture is devoted to consideration of reversible and irreversible adiabatic expansions of
perfect gases, and introduces the heat capacity ratio y. Consideration of adiabatic processes is
justified by mentioning their importance in the theoretical analysis of internal combustion
engines and propagation of sound waves, but no further details of these applications are given.
The main aim here is to develop the idea of the internal energy change as the work involved in
an adiabatic process, thereby making possible a purely mechanical definition of heat.

Lecture No. 5

The goal of this lecture is to introduce the Joule-Thomson Effect as a direct consequence of the
existence of cohesive forces between gas molecules. The lecture begins with a description of
this general idea, followed by derivation of the relation between the constant-pressure heat
capacity and the isenthalpic and isothermal Joule-Thomson coefficients. The practical
importance of the Joule-Thomson Effect in the operation of refrigerators is described, and the
lecture concludes with numerical examples illustrating the typical values of the temperature
change achievable by a given pressure drop.

Lecture No. 6

In this lecture, a molecular interpretation for the heat capacities of ideal gases is developed. The
various ways in which molecules can absorb energy are identified, and the concept of
‘mechanical degrees of freedom’ is introduced. The determination of the number of mechanical
degrees of freedom is then illustrated for both linear and nonlinear molecules. A qualitative
description of the harmonic oscillator model for a vibrating bond is given, and the Equipartition
Principle is stated. The lecture concludes with a comparison between experimental molar heat
capacities and those predicted by the Equipartition Principle, and a qualitative explanation for
the discrepancy in terms of the quantum theory.

Lecture No.7

The subject of thermochemistry is introduced by considering the experimental aspects of
calorimetry, in particular, the relation between the enthalpy and internal energy changes and
how calorimeters can be calibrated by electrical generation of a precisely-known quantity of
heat. It is worth considering this latter point in detail, because all domestic electrical heaters
operate on the same principle (Joulean heat evolution). Hess’s Law of Constant Heat
Summation is then introduced as the application of the First Law to chemical reactions, and the
lecture is concluded by summarising the rules that apply in the determination of enthalpy
changes by addition and subraction of reactions.

Lecture No. 8

Thermochemical calculations are illustrated in detail in this lecture by determining the heats of
formation for cyclohexane, cyclohexene, cyclohexadiene and benzene from combustion
enthalpy data. The enthalpies of formation so determined are then used to calculate the
enthalpies of hydrogenation for cyclohexene, cyclohexadiene and benzene to cyclohexane, and
Hess’s Law is illustrated by obtaining the same results directly from the combustion enthalpies.
Comparison of the enthalpies of hydrogenation for the three unsaturated compounds leads
naturally to an average enthalpy per double bond, and the concept of resonance stabilization.
The lecture concludes with a discussion of how enthalpies of formation can be determined by
addition of individual bond enthalpies, and the assumptions and errors inherent in such
estimates.




Lecture No. 9

The procedures illustrated in the previous lecture are summarised by statement of the general
expression for the enthalpy of an arbitrary reaction in terms of the enthalpies of formation of all
products and reactants, and the implied convention regarding the enthalpies of formation of
clements in their standard states is discussed. The use of thermodynamic cycles for the
estimation of enthalpy changes is introduced by consideration of the problem of calculating the
enthalpy of vaporization of a liquid at a temperature lower than its boiling point, and this is
subsequently generalised to an approximate expression for the temperature-dependence of the
enthalpy of an arbitrary reaction in terms of the heat capacities of participating species. Finally
the Born-Haber cycle is introduced by considering the estimation of lattice energies of ionic
solids.

Lecture No. 10

The concept of a cyclic mechanical process is introduced as a continuation of the previous work
on thermochemical cycles, and used to introduce the entropy as the quantity of heat transferred
divided by the temperature of the transfer. The Carnot cycle is chosen as a particular example,
not because it is a convincing model for an actual device, but because application of the First
Law to each step of it shows that the entropy change around the cycle is zero. Neither the
Carnot cycle nor any other mechanical cycle is considered further; it is felt that the more
detailed discussions that are presented in most textbooks are a digression that is more likely to
confuse than enlighten students. The general result that the entropy change is zero around any
reversible cycle is merely stated without proof. The lecture is concluded by consideration of the
calculation of entropy changes for simple processes, such as the reversible isothermal
expansion of perfect gases and the reversible vaporization of a liquid at its boiling point. The
concept that a positive entropy change is generally associated with formation of more
disordered molecular arrangements is also introduced.

Lecture No. 11

The calculation of the entropy change associated with raising or lowering the temperature of a
substance is introduced as a generalisation of the definition of entropy presented in the previous
lecture. Attention is then turned to the estimation of the entropy change experienced by the
environment as a result of loss or gain of heat by the system. This leads naturally to the
statement of the Second Law, that the direction of spontaneous processes is that in which the
combined entropy of the system and the environment increases. The remainder of the lecture is
devoted to demonstrating the equivalence of this statement and other versions of the Second
Law.

Lecture No. I2

In this lecture, processes that are known to be irreversible are analysed to determine the entropy
changes experienced by the system and the environment. The emphasis on calculations of
entropy changes in specific irreversible processes is a significant point of departure from
conventional treatments, which are content to state the Second Law in the form of a differential
and move on. It is felt that it is only through calculations of this kind that a good feeling for
how the Second Law operates can be gained. The processes considered include irreversible
cooling, volume changes and phase transitions, and have been selected to enable the students to
be able to identify whether the system or the environment experiences the greater entropy
change.

Lecture No. 13

The molecular interpretation of entropy is introduced by observing that the irreversible
processes considered earlier have in common a tendency to equilibrium. In statistical-
mechanical terms, the equilibrivm arrangement corresponds to the most probable molecular
arrangement available to a system of given size and total energy. The Boltzmann formula for




the entropy is stated, without proof. The macroscopic and microscopic views of entropy are
brought together by consideration of the Third Law: the zero entropy associated with a perfect
crystal is made quite plausible by invoking Boltzmann’s formula. The lecture concludes with
the alternative statements of the Second Law in terms of the Gibbs and Helmholtz functions,
and the significance of these functions in relation to the maximum work that can be performed
by the system.

Lecture No. 14

This lecture contains most of the formal manipulations required in the course. The most
important goal is the determination of the pressure and temperature dependence of G, from
which follows the definition of the fugacity. The starting point is the differential equation
expressing the combined First and Second Laws, which itself is derived by applying a limiting
procedure to the finite change in internal energy corresponding to finite temperature and volume
changes. To obtain the required result it is necessary to apply successive Legendre
transformations to the Combined First and Second Laws, which requires expressions for the
differentials of the products pV and TS: these differentials are themselves derived by a limiting
procedure. Straightforward algebra then leads to the result dG = Vdp - SdT. The dependence
of G on p for an ideal gas is introduced and generalised to give the relation between the
chemical potential and the fugacity. Finally, the law of chemical equilibrium is stated for a
reaction between gases.

Bibliography

In developing this course I have compared the developments of thermodynamic concepts
presented in many published textbooks, and have attempted to combine the best elements of
each. Those texts that I have found most useful are as follows.

Atkins, P.W. (1990). “Physical Chemistry”, 4th ed., Oxford University Press. This is
probably the most widely-used textbook on general physical chemistry. It is probably not
suitable for students with rather weak mathematical backgrounds.

Barrow, G.M. (1973). “Physical Chemistry”, 3rd ed., McGraw-Hill. This text develops
macroscopic and microscopic views of matter in parallel, which I think might tend to confuse
students: thermodynamic results are necessarily independent of molecular models. The use of
the Second Law to suggest the definition of the Gibbs function is good.

Moore, W.J. (1972). “Physical Chemistry”, 5th ed., Longmans. The analogy between the
mechanical potential energy and the internal energy function is developed very thoroughly.
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discussion of the application of Born-Haber cycles to estimation of lattice energies etc.

Bromberg, J.P. (1980). “Physical Chemistry”, Allyn and Bacon. Problems contain quite a few
applications to biological systems.




Physical Chemistry Lecture 1: Summary

Thermodynamics is the study of energy relationships associated with physical and chemical
transformations of substances. We begin our study of this subject by revising some physical
concepts that are fundamentally important to the more specific results to be covered later.

The first of these concepts is that of a force. The effect of a force is to change the velocity of an
object, or to prevent an object from moving. Dimensions of force are M L T-2, where M, L and
T are the fundamental units of mass, length and time. In the SI system, these fundamental units
are the kilogram, the metre and the second, respectively, and the composite unit kg m s-2 is
referred to as the newton (N).

A force is distributed over an area is often described by the pressure, which is equal to the
force divided by the area. The generalised dimensions of pressure are M L-1 T-2. In the SI
system, pressure is expressed in pascal (Pa) or newton per square metre, which is equivalent to
kg mrt s-2,

When an application of a force causes an object to move, work is said to be performed. The
work done is equal to the product of the force and the distance moved. The capacity to do work
is referred to as energy, and as we shall see, the performance of any sort of work requires the
consumption of some kind of energy. General dimensions of work and energy are M [2T-2,
In the SI system, work is measured in joule or newton metre, equivalent to kg m? s-2.

The rate at which work is done or energy is consumed is known as the power, which is

accordingly expressed in the dimensions M L2 T-3, The SI unit of power is the watt (W),
which corresponds to the expenditure of one joule per second. In terms of the fundamental

units, W = kg m2 s-3.

Many important measurements in thermodynamics yield values of the rate of change or
derivative of one gquantity with respect to another. Furthermore, since thermodynamic
quantities are in general functions of more than one independent variable, these rates of change
can be expected to depend on which independent variables are held constant. As a result,
thermodynamic formulae very often involve partial derivatives. An example of a partial
derivative is the quantity

which is read as, ‘the partial derivative of p with respect to T at constant V’. Knowledge of the
value of derivatives allows estimates to be made of the change of one variable corresponding to
a change in the other. For example, for mercury at 323 K, the above partial derivative is 46.2

atm K-1. Therefore, when the temperature of a sample of mercury confined to constant volume
increases from 323 K to 325 K, the corresponding increment of pressure is

op ~ (_S%)VST = (46.2 atm K-l) x (2K) = 92.4 atm.

This is typical of the calculations for which thermodynamic partial derivatives are used. This
type of relation between corresponding increments is in general to be regarded as approximate,
since the derivatives themselves can be expected to depend on the variables concerned.
However, this dependence can sometimes be neglected to an excellent approximation.
Increments of functions of several variables can clearly be made for each independent variable.
For example, if the volume of a substance is regarded as a function of temperature and
pressure, the increment of volume corresponding to simultaneous increments in p and T is
given by

5V = (g—‘T’)psr + (%—Z)Tap + o




The additional terms not shown in this equation involve higher partial derivatives and higher
powers of 3T and 3p, and are negligible if these increments are sufficiently small. In this limit,
the expression reduces to the fotal differential of V with respect to T and p:

av = Gpdr + Ghydp

If the quantities dT and dp are chosen in such a way that dV is zero, a relation can be
established between the two partial derivatives of V and the partial derivative of p with respect
to T. This can be derived by dividing dp by 4T and transposing terms:

oV
ap. (a_T)p

op, _
v T ey
op’ T

The three partial derivatives in this equation are of importance because, as we will see in
subsequent lectures, their values reflect the strength of cohesive forces in the substance. Since
the volume is an extensive quantity (i.e., depends on the quantity of substance), the
dependence of volume on pressure and temperature is usually expressed in terms of the thermal
expansivity,

= 1V
* = Qe

and the isothermal compressibility,

= 1V,
The negative sign is included here because volume must decrease with increasing pressure.
These quantities give the relative or fractional change in volume with temperature or pressure.
Learning Objectives:
Knowledge

1.1.1 Express physical quantities such as force, pressure, work, energy and power in terms
of general dimensions mass M, length L and time T and in terms of SI units,

1.1.2 State the following physical relationships:

) force in terms of mass and acceleration

(ii) work in terms of force and distance

(iii)  pressure in terms of force and area

(iv)  relation between power and energy consumption over time

1.1.3 Define isothermal compressibility and isobaric thermal expansivity.
Comprehension

1.2.1 Write expressions for the increment of functions of one or several variables.

1.2.2 Explain why a negative sign is used in the definition of the isothermal compressibility
but not in the thermal expansivity.




Application

1.3.1
1.3.2

1.3.3

Perform simple calculations of force, pressure, work/energy, and power.

Use values of partial derivatives to relate increments of dependent and independent
variables.

Determine fractional volume changes from pressure and temperature increments and
vice versa, given values of compressibility and thermal expansivity.

Analysis

1.4.1

Set up relations between partial derivatives of a function of two variables in the manner
illustrated for the volumetric derivatives.

Problems

Acceleration due to gravity is 9.807 m s-2,

1.1
1.2

1.3

1.4
1.5

1.6

1.7

1.8

1.9

1.10

Find the force exerted on a horizontal surface by a mass of 1 kg.
[1.1.2(31),1.3.1]
Determine the pressure if the weight of the mass in problem 1 is distributed over (a)
100 ¢m2, and (b) over a pin-point of area 0.01 mm2,
[1.1.2(iii),1.3.1]
What work must be done against the force of gravity in lifting an object of mass 3 kg 50
m above the surface of the earth?
[1.1.23ii),1.3.1]
Calculate the average power involved in lifting the mass of question 4 in 30 s.
{1.1.2(iv),1.3.1]
Domestic energy consumption is usually measured in kilowatt hours (kWh). What is
the equivalent in joules?
[1.1.2(iv),1.3.1]
An electric jug with a rated power of 1.5 kW boils a cup of water in 60 s. Calculate the
amount of energy consumed in (a) joule (b) kWh.
[1.1.2(iv),1.3.1]
The 'calorie’, formerly used in dietetics as a measure of energy yield, is equal to 4.184
kJ. Calculate the average power of a human being consuming 2000 'calories’ per day.
[1.1.2(iv),1.3.1]
The isothermal compressibility of Pb at 300 K is 2.21 x 10-6 atm-1. What is the
fractional decrease in volume of a sample of Pb resulting from an increase in p of 100
atm?
[1.3.3]
The isobaric thermal expansivity of benzene at 1 atm and 293 K is 1.24 x 10-3 K-1.
Assuming this to be constant, estimate the temperature increase required to cause a
fractional increase in volume of 0.5%.
[1.3.3]
A thermodynamic quantity U depends on temperature T and volume V. By following
the same argument as demonstrated for the volumetric partial derivatives, establish a
relation between the quantities

U U oT
Gryv Qr @4 Gylo
[1.2.1,1.4.1]




Solutions: Lecture 1.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

The force is equal to the product of the mass and the acceleration due to gravity. Thus,

F = (1kg)x (9.807 ms?)

= 9.807 N.

The areas involved here are respectively 10-2 m2 and 10-8 m2. The corresponding
pressures are therefore

_ (9807 N)
(10

_ (9807 N)

= 9,807 x 108 Pa.
8 2
m*)

(a) p = 980.7 Pa (b) p

m?) 1o
Work is the product of force and distance:

w = Fd = (3kg) X (9.807 m s2) x (50 m)
=1.471 k.

Average power is the work divided by the time taken:

(1471 0)

= 49, .
303) 9.04 W

Pp=%X=
t

17 is equal to 1 W s. Therefore
1 kWh = (1000 W) x (3600s) = 3.6 MJ.

Amount of energy is equal to power times time. Therefore,

Energy = (1.5 kW) x (60 s) = 90kJ = 0.025 kWh.

The total energy consumed by the person in one day is
2000 ‘calories' = 2000 x 4.184 kJ
= 8.368 MI.

The average power is obtained by dividing this quantity by the length of one day in
seconds:

(8.368 x 10° J)
24 h) x 3.6 x 10° sh™)

= 97TW.

power

This is a little less than the rate of energy consumption of a typical light bulb.




1.8  Applying the definition,

p= ( )T = -87‘/ ~ Bp = (221 % 10°® atm) x (100 atm)
= 221%10™,
or about 0.02%.
1.9  Applying the definition,
8T = & 8V _ (0'0053 = 403K.

Vo (124x10°K
1.10 The total differential of U as a function of T and V is
- oU G108
- Gt + Gpyav.
Setting dU = 0 (i.e. requiring that U is constant),
aU. 14
D = - Gy av,
and dividing dT by dV and transposing terms results in

(a )y

()U
(TV




Physical Chemistry Lecture 2: Summary

In classical mechanics, the position and velocity of objects can be determined completely from
their initial positions and velocities and knowledge of the forces acting upon them. The crucial
relation which makes this possible is Newton’s Second Law of Motion:

F. = m—* (1)

where F; and v; are the force and velocity vectors for each particle i of mass m; in the system,

and t is the time. Application of Newton’s Law to each object results in a collection of
differential equations, which can be solved analytically only for simple systems containing one
or two particles.

The most important characteristic of classical mechanics is the idea of interconversion of kinetic
and potential energy. To demonstrate how this works, consider the simple case of a single
particle acted on by a force that depends only on the distance r from some origin. From the
equation of motion, it is possible to relate the amount of work required to move the particle
between points rp and ry to the difference in kinetic energy between these two points:

2
dv dr
Fir) =m—=m— )

r "
_ _ fddr
w = JF(r) dr = m 4y g4
1]

(=]

v - Jmvp. 3)

s

The force can also be related to the potential energy u(r) by the equation

du

F = - = 4

; )
Potential energy is defined as the work required to bring the particle from infinity (where the

force is zero) to some distance 7, so the work expressed by equation 3 is also equal to
r

1
d
w = -J%‘dr = u(ry - u(r). (5)

Equating the right-hand sides of equations (3) and (5) and combining terms, we obtain

u(ry) + %mvg = ulry) + mvi. (6)
Thus, the sum of kinetic and potential energy does not change. Three more important ideas
emerge from consideration of the above simple model. First, the work expressed by equation

(3) is seen to depend only on the points rg and r; and not on the path taken between these

points. Second, it is also clear from equations (4) and (5) that only the difference in potential
energy proves to be physically significant. Third, if the potential energy assumes a maximum
or minimum value, the force becomes zero and a point of equilibrium is said to be reached.
This equilibrium is said to be stable or unstable depending on whether the potential energy is a
minimum or maximum, respectively.

1. .2

While the above equations show that potential and kinetic energy can be interchangeable, there
is no way that the analysis can account for the conversion of kinetic energy into heat by
velocity-dependent frictional forces.




The subject of thermodynamics came into being from the observations that heat could be
generated from performance of mechanical work (as in cutting or drilling of materials), and that
mechanical work could be produced from heat input (as in the steam engine). Careful
experiments by Joule, Helmholtz and others led to the formulation of a more general principle
of conservation of energy that applied to both heat and mechanical work. This is now known
as the First Law of Thermodynamics, and can be stated as follows:

"In a transition between two equilibrium states of a system, the sum of the
amount of work done on a system and the heat supplied to it is a constant,
depending only on the initial and final states."

or,
AU =q + w.

The value of the constant is the change in the internal energy function, U, for the system. The
amount of work corresponding to a given amount of heat is expressed by the mechanical
equivalent of heat, which is 4.184 joule per calorie, where one calorie is the amount of heat

required to raise the temperature of 1 g water from 150C to 160C.

The quantities of heat implied in the statement of the First Law are determined by measurement
of changes in temperature of objects of precisely known properties. The simplest relation
between the quantity of heat, quantity of substance and the temperature change is

q = nc AT (8)

where # is the number of moles, and the specific heat ¢ is the amount of heat required to raise
one mole of substance by 1 K. Specific heat can also be defined per unit mass rather than per
mole, but this is not commonly used in chemical thermodynamics. In general, the specific heat
depends on temperature, and the equation

T,

q =m |c(T)dl 9

T

must be used in place of equation 8. Over small temperature ranges, the variation of heat
capacity can be neglected for many substances.

Learning Objectives
Knowledge
2.1.1 State the following physical relationships:

6] relation between the temperature change and quantity of heat
(ii) The First Law of Thermodynamics

Comprehension

2.2.1 Distinguish between statements of the First Law in which work is done on or by the
system.

Application

2.3.1 Calculate the quantity of heat required to raise the temperature of an object with constant
heat capacity.




2.3.2 Calculate the quantity of heat required to raise the temperature of an object with

temperature-dependent heat capacity.

Problems

2.1

2.2

2.3

2.4

2.5

The heat capacity of Al is 24.35 J K-1 mol-1, Calculate the heat input required to raise
the temperature of a 100 g block of Al by 3.8 K, assuming that the heat capacity is

constant (molar mass of Al = 26.98 g mol-1).
[2.3.1]

State the relation between the heat suplied to a system, the work done by it, and the
change in the internal energy.

[2.1.1(1),2.2.1]
The heat capacity of air at room temperature and atmospheric pressure is about 21 J K-1
mol-1. How much heat is required to raise the temperature of a room of dimensions 5m
X 6m x 4m by 100C? Neglecting losses, determine how long a 1.5 kW heater would
have to operate to achieve this temperature increase.

[2.1.1(i),2.3.1)
Many important experiments devised by Joule involved the conversion of mechanical
energy into heat, for example, by arranging a falling weight to stir water by turning a
paddle wheel. In one such experiment, a mass of 6.00 kg fell through a height of 50.0
m and stirred 0.600 kg of water initially at 150C. Assuming that all the potential energy
was converted into heat, calculate the final temperature of the water. At 15°C, the heat
capacity of water is 4.184 J g-1; assume that this is constant over the temperature range

encountered.
[2.3.1]

The molar heat capacity of Ag in the temperature range 50 K < T < 100 K is given by
the empirical equation

¢, = -0.63 + 032T - L1x10°T"

Calculate the quantity of heat required to raise the temperature of 300 g Ag from 55K

to 98 K (molar mass of Ag = 108 g mol-1).
[2.3.2]




Solutions

2.1  Itis first necessary to determine the number of moles:
= U909 _ _ 3706 mol
(26.98 g mol )
The heat required is therefore
g = nc,(T,-T))
= (3.706 mol) x (24.35 J K 'mol) x (3.8 K)
= 3429
2.2 If wis the work done by a system and ¢ is the heat supplied to it, then the internal
energy change is
AU =q - w
2.3

'.I'he number of moles of air contained in the room of volume 4 mx Smx 6 m =120 m3
is

_pv

"= RT
(1013 x 10° Pa) x (120 m®)
(8.314 T K 'mol ™) x (298 K)

= 4906 mol.
The quantitiy of heat is therefore

q = nc, T, - T)

(4.906 x 10> mol) x (21 J K 'mol™) x (10 K)
1.030 MJ.

Atarate of 1.5 kW = 1.5kJ s-1, this would be delivered in a time

;- (1030 % 10° J)
(1.5 x 10° ¥ s1)

=687 s

or just over 11 minutes.

2.4  Represent the mass of the weight by M and the specific heat per unit mass of water by
c. The change in mechanical potential energy of the weight is

Au = Mgh

= (6.00 kg) x (9.81 m 52) x (50.0 m)
= 2.94 kJ.




On complete conversion to heat, this will result in a temperature T which satisfies the
equation

g = Au = mc(T - 288)

T = A 288
mc
_ (2.94 kJ)
(0.600 kg) x (4.184 kI kg'h

+ 288

= 2892 K.

2.5  The number of mol of silver is

_ (300 g

= — = 2.778 mol.
(108 g mol )

The heat required is therefore

T,

q = njcpdT
T

T

2
n_[[- 0.63 + 0.32T - 0.00117°] dT

¢ T T,
ni-063 + 03221 - 00011 21

WithT; =55K, T2 =99 K and n = 2.778 mol

3 3
g = (2.778 mol) x [- 0.63(98 - 55) + 0.32(98" - 55°) - 0.001128 =23 555 ]
=22k




Physical Chemistry Lecture 3: Summary

The internal energy function introduced in the previous lecture is similar to the mechanical
potential energy in that the change in the internal energy depends only on the initial and final
states of the system. This is to be contrasted with the heat and work terms, which both depend
on the way in which processes are carried out. Another point of similarity is that only
differences in internal energy are physically significant. Absolute values of internal energy can
be defined only by adoption of an arbitrary convention. The difference between internal energy
function and mechanical potential energy is that mechanical potential energy is a measure of the
capacity to do work, whilst U is a measure of the capacity to do work and supply heat.

In applying the First Law to the analysis of mechanical processes involving gases, it is
convenient to introduce the concept of a reversible process. This is one in which the system
passes through a continuous sequence of equilibrium states in going from the initial state to the
final state. In a reversible compression or expansion, the pressure is related to the volume by
an equation of state, for each intermediate volume. In practice, complete reversibility cannot be
achieved, because of the finite time required for gases to reach equilibrium. The general
formula for the work involved in a reversible volume change for a gas is
v

2
w = - Jp dv (1)
Vl

and for an ideal gas at constant temperature, this yields the result

VZ
w = -nRT In (%) 2)
1

Since for an ideal gas the internal energy depends only on the temperature, the internal energy
change for such an isothermal compression or expansion is zero, so that application of the First
Law gives the result

AU =g +w=20 or q = -w. 3)

The other important case is where a gas or other substance expands against or is compressed
by a constant pressure. Here, the work involved is

w=pV,-V). @)

From these results it is clear that when the change in volume is zero, no work is possible.
Therefore the internal energy change can be identified as the heat absorbed at constant volume:

AU = q,. 5)

The heat absorbed at constant volume can be in turn related to the corresponding temperature
change by definition of the constant volume heat capacity ¢v:

¢, = &Y, ©

If heat is absorbed constant pressure, the system can do work by expanding against this
pressure, and application of the First Law leads to the result

AU = g, - pAV or q, = AH = AU + pAV )]

where the function H is referred to as the enthalpy or heat content. The heat capacity at constant
pressure is defined by

¢, = &y, @®)




At constant volume a substance can respond to the absorption of heat only by raising its
temperature, while at constant pressure, it can respond by changing its volume (i.e.,
performing work) as well as raising its temperature. We therefore expect that ¢, will be greater

than ¢y. The starting point in the calculation of the heat capacity difference is the expression for
the differential of U as a function of T and V, viz.

— (U U
au = 3T 2AdT + ( BV)TdV' ©
Dividing by dT and imposing the condition of constant pressure, we obtain
oUy _ AU, (dV.
(aT)p - CV + (aV)T (aT)ps (10)
which is in tumn substituted into the definition of the constant pressure heat capacity :
oH, _ U oVy Uy 19V
&, = @, + pEDy, = ¢y + b + GPIGH, (1)
or, in terms of the thermal expansivity,

& - oy = Ip + @Dylav. (12)

The isothermal derivative of U with respect to V is called the internal pressure, and is a direct
measure of the strength of cohesive forces in the substance. For the special case of an ideal
gas, the internal pressure is identically zero and equation 12 reduces to

Cp - Cy = R. (13)
Learning Objectives
Knowledge
3.1.1 State the following physical relationships:
@) work of expansion/compression for reversible process

(ii) work of expansion/compression for irreversible process
Comprehension

3.2.1 Distinguish between heat absorbed at constant volume and constant pressure and use
this distinction to define internal energy and enthalpy functions.

3.2.2 Explain qualitatively why the internal pressure of a substance is in general different
from zero.

3.2.3 Describe the dependence of U on V for a perfect gas.

3.2.4 Explain the physical origin of the difference between ¢, and cy.
Application

Calculate:

3.3.1 work and heat transfers involved in reversible isothermal expansion/compression of an
ideal gas.

3.3.2 work and heat transfers involved in irreversible isothermal expansion/compression of




3.3.3

3.34

an ideal gas.

internal energy and enthalpy changes resulting from heat input and performance of
work.

internal pressure from heat capacity difference.

Analysis

Justify steps involved in the derivation of the relations:

3.4.1
C, - C = Ip + DSk Yy = 0@, + G5,Sh,
3.4.2
oUy  _ oU.
(aT P Cv + aV (aV)T
Problems
3.1  The constant-volume heat capacity of Ar is 12.47 J K-1 mol-1. Calculate the change in
internal energy when a sample of Ar at 298 K and 1 atm pressure, confined to a volume
of 15.36 L, absorbs 36.23 J of heat. What is the final temperature of the gas?
[3.2.1,3.3.3]
3.2  Consider the equation
&L - oy + )T( Dy M
(i) Derive this equation, starnng from the expression for the total differential of U/ as a
function of 7 and V.
13.4.2]
(i) What are the dimensions (in general umts mass M, length L, time T etc.) of the quantity
( £
Explain why this quantity should be in general different from zero.
[3.2.2,1.1.1]
(iii) By considering the change in internal energy of a substance with temperature and at
constant pressure, give a physical interpretation of equation (1).
[3.2.4]
3.3  Justify each step in the following derivation:
¢ - o =, - ( )V
=&Y, +p @D, - &Y,
= I + 51D,
=[p + ( 2oy
[3.4.1,3.4.2]
3.4  For 1 mol of benzene at 1 atm, o = 1.24 x 10-3 K-1,V = 88.77 cm3 and the difference

between the heat capacities is ¢p - cy = 45 J K-1 mol-1. Calculate the internal pressure,

and comment on the size of your result.
[3.2.4,3.3.4]




Solutions

3.1  We are given the pressure and temperature of the constant-volume gas sample. It is first
necessary to work out the number of moles:

5 -2 3
pV _ (1.013 x 10 P_all) X (}1.536 X10"m”) _ 0.6280 mol
(8.314 JK mol ) x (298 K)

n =

3
h-.i

The change in internal energy is equal to the heat absorbed at constant volume, i.e. AU
=36.23 J. The final temperature T satisfies

q = ncy, (T - 298)

i.e.,
T - 208 + (36.23 J)
(0.6280 mol) x (12.47 I K 'mol ™)
= 208 + 4.6
= 326K

3.2(i) Considering U as a function of T and V, the total differential is
_ U oU.
dU = (SD0AT + GppdV
At constant pressure, the differential of V is

( )dT

30 that

)VdT + ( T( )PdT
Dividing both sides by 4T gives

U
( L = Gy ( 90y 2h,
which is the required rcsult.
(ii) The dimensions of internal energy and volume are, respectively,

] = ML2T?

v] = L’

The derivative of internal energy with respect to volume therefore has dimensions

2.2

oU, ,_ ML'T" _ 12
[(a_V)T] = —L3 =ML T".




(i)

3.3

3.4

which is clearly the same as force per unit area or pressure:

MLT?

L?.

This derivative is referred to as the internal pressure, and its value reflects the strength
of cohesive forces in the substance.

The first term on the right hand side of the equation gives the change in internal energy
resulting from the temperature change alone, and the second term expresses the change
in internal energy resulting from a change in volume alone. In this situation, the volume
change itself results from the change in temperature, as expressed by the derivative of
volume with respect to temperature.

Line 2: This follows from the definition of enthalpy, H=U + pV.

Line 3: This follows from the identity proved in part (c) of the preceding problem:
Uy _ QU Uy IV
Grr = Gpv * GvrGre
Line 4: Definition of the thermal expansivity:
_ 1,9V
* = Vore

Rearrangement of the result given in part (a) produces

Cp - Cy

oV

U, _
P+ Gy
Taking V to be the given molar volume, this is

(453 K mol™)
(1.24 x 107 K™y x (88.77 x 10°® m® mol ™)
4.088 x 10° Pa

p+ (gg)T =

= 4036 atm.

The internal pressure is therefore

oUy
&Pr = 4035 amm.




Physical Chemistry Lecture 4: Summary

The expansions and compressions considered in the last lecture involved gases that were
confined in containers with walls that are diathermal, i.e. allowing the transfer of heat to or
from the environment. In this lecture we consider expansions of gases that are thermally
isolated - such processes are referred to as adiabatic.

The starting point in the analysis of adiabatic processes involving ideal gases is the differential
form of the First Law, viz.,

dU = dq + dw 1)
which for an adiabatic process reduces to
du = dw. )
Recailing the definition of ¢V and the expression for the differential work increment,
chT = -pdV 3)
and inserting the ideal gas equation on the right hand side we obtain

ol = -ELav. @

To obtain the relationship between temperature and volume, we divide both sides of equation
(4) by T and integrate from T=T1,V=Vito T=Tp, V=V
T, Vs
¢
Voar = -r |4¥
T dr R J- v (3
Tl Vl

Assuming that heat capacities are constant, and introducing the formula for the heat capacity
difference for an ideal gas,

i

T2
c v In (T—)

1 Y2 6
: '(Cp - CV) n(v_l) ( )

or

Il

T, v,
In G5 = - (Y- Dln G5, (7
1 i

where ¥ = cp/cy. Finally, we take the exponentials of both sides, and apply the ideal gas law in
the form

T, _pY,

— (8)
T, pnV

to obtain
Y
PV =PV ®)




For an irreversible adiabatic expansion, such as would occur if the pressure were suddenly
reduced from p; to p,, this result cannot be used. Instead of using the ideal gas law as in

equations 4 onwards, the temperature-volume relation is
Ty -T) = -py(V,- V)
RII”2 RT, 0
= - pz(ﬁ - Tl")- (10)
From this equation, the new temperature can be determined:

Vv
— —
P, R
T, =T ——— (11)
1+ X
R

The mechanical processes of the type considered here and in the previous lecture are of
importance in the thermodynamic analysis of heat engines (such as steam engines and internal
combustion engines) and refrigeration cycles. The adiabatic gas law is also of importance in
acoustics, since the propagation of sound waves through gases involves compressions and
rarefactions that are essentially adiabatic. Measurements of the velocity of sound in gases can,
in fact, be used to determine the heat capacity ratio and compressibilities.

Learning Objectives

Knowledge

4.1.1 Define the terms ‘reversible’, ‘isothermal’, ‘adiabatic’, ‘diathermal’.

Comprehension

4.2.1 Relate the work performed in an adiabatic process to the change in internal energy.

4.2.2 Recognise the path-dependence of work and heat transfers, and the path-independence
of the internal energy change.

Application
Calculate:

4.3.1 the heat capacity ratio for a perfect gas, given the constant volume or constant pressure
heat capacity.

4.3.2 pressures, temperatures and volumes in reversible adiabatic processes involving perfect
gases.

4.3.3 pressures, temperatures and volumes in irreversible adiabatic processes involving
perfect gases.

Analysis

4.4.1 Justify steps involved in the derivation of the relation:

pVY = constant




Problems

4.1

4.2

4.3

4.4

4.5

4.6

4.7

@
(ii)

(iii)

3.72 mol of a perfect gas, confined to a volume of 10 L at 298 K, expands reversibly
and isothermally until its volume has trebled. Calculate the work done, heat transferred
and the change in internal energy.

{3.3.1,3.3.3]

Determine the final pressure of the gas in problem 4.1. Repeat the calculations of w, g
and AU assuming that the gas is allowed to expand suddenly against this pressure.

[3.3.2,3.3.3]
Justify each numbered step in the derivation of the adiabatic gas law pVY = constant:
C,dl = pdVv ()
_.RT
= -S4V )
C,dr
v- - rdvY
T =Ry
TZ V2
dT _ o [V
oy |7 = R J v (3)
T, v,
NGl = Rin D) @)
¢, In(=2) = -Rln (==
VT, Vi
T V, 1-v
2 2
2= D @
T, v
p.V V, 1-v
T &)
p% 1
¥
PV, = Yy
[4.4.1]
Calculate the heat capacity ratio, ¥ = c,/cy, for a perfect monatomic gas with cy = 3R/2.
[4.3.1]

1.23 mol of the gas of problem 4.4 expands reversibly and adiabatically from V) =
15.82 L at T = 300 K until its volume has doubled. Calculate the final pressure of the

gas and its internal energy change.
[4.3.2]
One mole of perfect gas at temperature 71, volume V; and pressure p; absorbs heat gv

at constant volume. Assuming that ¢y is constant, derive expressions for the final
temperature T, and pressure p,, and the internal energy change AU for the process.

[3.3.1,3.3.3]
Suppose that the gas in problem 4.6 expands isothermally and reversibly at T to

pressure pj.
Determine the final volume Va.
Determine the internal energy change for the process (p2, V1, T2) -> (1, V2, T2).

[3.3.1]
Compare the total heat absorbed by the gas in the composite process (py, Vi, T1) ->

(p2, Vi, T2) -> (p1, V3, T2) with the heat that would be absorbed in the direct process
(p1, V1, T1) -> (p1, V2, T2). What do you notice? [1.2.5, 1.1.1(xii)]




Solutions

4.1 Givenn=3.712mol, T =298 K, V; = 10 L. The volume trebles, so V, = 30 L. Since

the expansion is reversible, the ideal gas law is obeyed at each intermediate volume.
Therefore,

v,

w = -IpdV

Vi

V2
) av
nRT j——v
1%

L

nRTi1 Yy
- n (V_l)

= - (3.72 mol) x (8.314 J K" mol ") x (298 K) x In 3

I

= -10.12 kJ

Since the internal energy of a perfect gas depends only on temperature, the internal
energy change is zero, so by the First Law,

g = -w = 10.12 kJ.
4.2  The final pressure is

nRT _ (3.27 mol) x (8.314 JK " mol ") x (298 K)
4 (3.00 x 107 m3)
= 270 x 10° Pa.

p:

The work involved in expanding irreversibly against this constant pressure is
w=-pWV,-V)
- (270 x 10° Pa) x (2.00 x 10 m®)

= - 5.40kl.

As before, the internal energy change is zero, so the heat absorbed is ¢ = 5.40 kJ.
4.3 Step 1: follows from the differential form of the first law, viz.

dlu = dq + dw

with dg = 0.

Step 2: the ideal gas law is assumed.

Step 3: the heat capacity is assumed to be independent of temperature.
Step 4: heat capacity ratio is introduced, along with the result

Cp

Step 5: ideal gas law is used in the form

—cV=R




T T,
4.4  Since ¢, - cy =R we have
= ¢y + R
= +—3—)R

Therefore c,/cy = 5/3.

4.5 The initial pressure is required if we want to use the result pV¥ = constant. This
pressure is

mRT,  (1.23 mol) x (8.314 T K 'mol™) x (300 K)
Vi (1.582 x 1072 m%)
= 1.939 x 10° Pa.

p, =

¥ Y
PV, = P,

Vl ¥ 5 1.,5/3
Py= P57 = (1939 %107 Py x 3)
2 4
=6.107 x 10" Pa.

The temperature corresponding to this pressure is

Vv
T, = Py¥s
nR

(6.107 x 10" Pa) x (3.164 x 10> m%
(1.23 mol) x (8.314 J K™ mol ™)

= 189.0 K.
The internal energy change is therefore

AU = nc, (T,-T))

(1.23 mol) x (1.5 x 8.314 J K 'mol ") x (189.0 - 300)

=- 1.703 kJ.
4.6  The temperature rise satisfies
ay = (T, - T))
I,=T + Z—:
=T + q}} ).




Since the ideal gas law holds, we must also have

T
P2 =2=14+ T
p1 Tl CVTI
30 that

q
p2 = pl(l + v ).

Also, by definition, the internal energy change is equal to gy.

4.7(i) The final volume V; is determined from Boyle's law in the form

P,
V, =V, P,
dy
= VIl + —1].
! eyl
(ii)

The internal energy change for the isothermal process at temperature T3 is zero

(iii)

The total heat absorbed in the composite process is

1%
2
Qiorat = C{To-T) + RT,In (Vl“)

= ¢,(T,-T) + RT,In (1 + &,

cVT 1

This is to be compared with the heat absorbed in the expansion from (Vy, T1) to (V2,
T») at constant pressure p1, which is

q, = AH

= c‘,,(i"2 - Tl).

Recalling the relation between ¢,, cy and R, and applying the ideal gas law, this
quantity can also be expressed as

g, = ¢ (T,-T) + R(T,-T)

(,‘V(It‘"2 - T1) + pl(‘I/2 - V1)'

These two heats are not the same, whicih illustrates the fact that g is not a function of
state, .




Physical Chemistry Lecture 5: Summary

In the previous lecture we considered the work and internal energy changes associated with
adiabatic compression and expansion of perfect gases. Another type of adiabatic process that is
of interest is the adiabatic expansion of a gas through a throttle valve or nozzle, resulting in a
decrease in pressure. The great practical importance of such processes is that the temperature of
the gas can also decrease. This phenomenon is known as the Joule-Thomson effect. To analyse
the Joule-Thomson effect by application of the First Law, consider a fixed quantity of gas
occupying volume V; at the initial high pressure p;, and V; at the lower pressure py. The work

required to force the gas through the nozzle is
w=pV. -p fo
= AU, 1)
since the process is adiabatic (¢ = 0). This work must be done against the cohesive forces of

the fluid. Equation 1 can be rearranged to give

AU + prf - pV, = AU + AQV) = 0 (2)

which shows that the enthalpy is constant, i.e., the throttling process is therefore isenthalpic. It
is of interest to determine how the temperature varies with pressure in the process. This
relationship can be determined by considering the differential of H as a function of temperature
and pressure, viz.,

= (OH oH. |
aH = G0yt + (Gfhyap @

and setting dH = 0 (imposing the condition of constant enthalpy). This results in the relation

&,
ory, _ __9p
or’?

where the quantities

o7 oH.

Gon  =d G0y
are teferred to respectively as the Isenthalpic and Isothermal Joule-Thomson Coefficients. The
isenthalpic Joule-Thomson coefficient is readily measurable, with a typical value of 0.1 - 1
K/atm, and is known to be a function of temperature and pressure. The temperature change in a
gas undergoing an isenthalpic expansion between pressures p and p; is given by

Py

oT
AT = |(Z=
J e ©
Py
from which it is seen that if p; > p,, the Joule-Thomson coefficient must be positive to result in

a decrease in the temperature. The coefficient changes sign at the Joule-Thomson inversion
point, which also depends on the pressure and temperature. For hydrogen and helium, the
Joule-Thomson coefficient is negative under most practically-important conditions.

The Joule-Thomson effect is of crucial importance in the liquefaction of gases. The gas to be
liquefied is compressed and driven through a throttle valve, during which its temperature
decreases (if it is beneath the inversion temperature). This cooled gas is passed through a
counter-current heat exchanger, which lowers the temperature of gas about to undergo the
throttling process. The temperature of the gas thereby becomes progressively lower, until it
eventually liquefies.




In addition to being used in the production of liquid air and related products, the Joule-
Thomson effect is even more widely applied in the operation of refrigerators and air
conditioners. In a refrigerator, heat is absorbed by the vaporization of a low-boiling liquid
(early models used liquid ammonia or liquid sulphur dioxide, but nowadays
chlorofluorocarbons, e.g. ‘Freon-12° are used). The heat absorbed by the fluid is given up 1o
the environment through an external heat-exchanger. To function continuously, the vaporized
refrigerant must be returned to the liquid state; this is achieved by the Joule-Thomson effect.

As we have observed, the Joule-Thomson effect originates from the existence of cohesive
forces in the gas. Another manifestation of these forces is in the variation of enthalpy with
temperature at constant volume. This can be determined from equation 1: dividing by 4T and
imposing the condition of constant V, we obtain

oH, _ (oH oH, (P

= o1 - 2D

after application of equation 5 and the definitions of o and B given in earlier lectures.
Learning Objectives
Knowledge

5.1.1 Define the terms ‘Joule-Thomson coefficient’, ‘isenthalpic’, ‘Joule-Thomson inversion
temperature’.

Comprehension

5.2.1 Demonstrate the constancy of enthalpy in an adiabatic throttling process.
5.2.2 Relate the decrease in temperature to the existence of cohesive forces.
Application

Calculate:

5.3.1 Isenthalpic Joule-Thomson Coefficient from Isothermal Joule-Thomson Coefficient and
vice versa, given the heat capacity at constant pressure.

5.3.2 temperature change in Joule-Thomson expansion between given pressure limits,
assuming constant Joule-Thomson coefficient.

5.3.3 temperature change in Joule-Thomson expansion between given pressure limits,
assuming pressure-dependent Joule-Thomson coefficient.

5.3.4 enthalpy of compression from isothermal Joule-Thomson coefficient.

5.3.5 pressure drop required to achieve a given temperature decrease, assuming constant
Joule-Thomson coefficient.

5.3.6 pressure drop required to achieve a given temperature decrease, assuming pressure-
dependent Joule-Thomson coefficient.




Analysis

Justify the steps involved in the derivation of the relations:

5.4.1
oH
=)
ar, _ ‘e
opH OH,
aT’?
542
3H\, _ .1 .a@T
G = olt - G
Problems
5.1  The average value of the isenthalpic Joule-Thomson coefficient for carbon dioxide at

5.2

5.3

300 K between 0 atm and 10 atm is 1.09 K atm-1. Estimate the temperature change in
an isenthalpic expansion in which pressure is reduced from 10 atm to 1 atm.
[5.3.2]

The heat capacity of carbon dioxide at 300 K is 37.2 J K-1 mol-1. From the Joule-
Thompson coefficient given in Problem 5.1, calculate the isothermal Joule-Thomson
coefficient, and hence estimate the enthalpy change when 1 mol of carbon dioxide is
compressed from 1 to 10 atm at 300 K. How does your value compare with the
corresponding enthalpy change for an ideal gas?

[5.3.1,5.3.4]
The isenthalpic Joule-Thomson coefficient of nitrogen at 298 K between 0 and 140 atm
is given by the empirical equation

(g%)y = A - Bp, where A = 0.2222 K atm’! andB = 8.0667 x 10* K am2.

5.4

3.5

5.6

@
(id)

Calculate the temperature drop when nitrogen undergoes an isenthalpic expansion from
140 atm to 1 atm at 298 K.
[5.3.3]

A refrigerant has a Joule-Thomson coefficient of 1.35 K atm-1 at 200C. Assuming this
to be constant, calculate the pressure drop necessary to produce a temperature decrease
of 100C.

[5.3.5]
Using the empirical equation for the pressure-dependent Joule-Thomson coefficient for
nitrogen given in problem 5.3, calculate the higher pressure p; needed to cool the gas

by 20 K when it expands to p2 = 1 atm.

[5.3.6]
The design of the Joule-Thomson experiment arose out of Joule’s attempt to determine
the internal pressure of a gas from measurement of the change in temperature on
expansion of a gas into a vacuum. This is expressed by the partial derivative of T with
respect to V at constant U, which is related to cy and the internal pressure by

oty - .. 9L
Under what circumstances would such a free expansion take place with no change in
the internal energy?
For nitrogen at 298 K and 1 atm, the heat capacities are ¢y = 20.74 J K-1 mol-! and ¢p =

29.12 J K-1 mol-1, the molar volume is 24.41 L mol-1 and the thermal expansivity is

3.671 x 103 K-1. Use these data to estimate the internal pressure, and the temperature
change when a mole of nitrogen doubles its volume at constant U.




Solutions

5.1  Assuming a constant Joule-Thomson coefficient, the temperature and pressure changes
are related by
AT = €D ap
= (1.09 K atm'!) x (- 9 atm)
= -981 K.
5.2

The isothermal Joule-Thomson coefficient is

( )T= C(

)H

i

(372]K mol )X(109Katm ) (101325)(10 Pa atm’ )
= —4.()0><10- m> mol'.

The enthalpy of compression is therefore

AH = )TAP

(-400m mol )><(9atm)><(101325><10 Pa atm™ )
= -365Jmol .

For an ideal gas, the corresponding enthalpy of compression is, of course, zero

5.3  When the Joule-Thomson coefficient depends on pressure, the more general relation for
the temperature change is
Py
aT = |&hy,ap
J op
Py
Py
= |(A - Bp)dp
P,
= A@, - py) - 3B@ - ).
Substituting the given values of A and B and the pressure limits
1 -4 2 2
AT = 0.2222 x (1 - 140) - Ex (8.0667 x 10 ) x (17 - 1407)
= -30.89 + 7.90
= -22.99K.
5.4

Assuming a constant Joule-Thomson coefficient, the required pressure change is given
by

Ap = (gT);j = (10K) + (1.35Katm) = 7.41 atm.




5.5  After applying the results of problem 5.3, it is seen that the required pressure p; is the
solution of the quadratic equation

AT = Ap, - 18 - (4ap, - 3BP).

or

1,2
-EBP1+API-C=O

where

C = Ap, - %Bp% - AT = 20.2218

using the given values of A, B and p;. Application of the quadratic formula leads to

A+ \/Az + 4480

p
1 2-18)
-0.2222 + 0.1294
-8.0667 x 10

115 atm.

5.6() AU would be zero if g were zero (achieved by thermal insulation of the whole system)
and w were zero (the gas expanded irreversibly against zero pressure).

(ii)  Applying earlier results, we have

¢p - = |p + ( )T]ocV

so that

U, _ %~ S
(av)’r‘ aV P

(8.38 T K 'mol ™)
(3.671 x 10> K1) x (2.441 x 10> m® mol)
= -7.808 % 10° Pa.

- 1.01325 x 10° Pa

The Joule coefficient is therefore

%,

@Dy, =
U()V

3
_ (O808x10°Pa) _ 1o s

2074 JK

so that
aT _ 3 23




Physical Chemistry Lecture 6: Summary

A general feature of thermodynamics is that it does not require any assumptions about the
details of molecular and atomic properties or configurations, and can therefore be expected to
be universally applicable. Thus, for example, our treatment of work and heat transfers
involving gases has not considered the underlying molecular mechanisms of energy
absorption. In this lecture, we consider the general problem of how molecules absorb energy,
and we examine the implications of a particular mode! for the distribution of energy in gases.

The absorption of heat by a gas obviously results in an increase in the energy of the molecules.
Molecules can absorb energy in various ways that can be identified as follows:

Translational movement of the centre of mass through space.

Rotational rotation about the centre of mass.

Vibrational stretching and bending of bonds.

Electronic promotion of electrons to molecular orbitals of higher energy.

Clearly, monatomic gases can possess only kinetic {and electronic) energy. While in principle
atoms and molecules can absorb energy by undergoing electronic transitions, the energies
involved are much larger than those typically encountered in situations where thermodynamics
is applied. We can therefore neglect the contribution of electronic transitions to heat capacity.

In the classical-mechanical approximation, description of the state of a molecule requires
specification of a number of coordinates, each associated with one of the above kinds of
motion or ‘mechanical degrees of freedom’. A single atom moving through space can move in
three directions, and has three degrees of freedom. A collection of N atoms moving
independently has 3N degrees of freedom and requires 3N coordinates, namely, the velocity
components in the x, y, and z directions for each atom. If these N atoms are joined together,
they no longer move independently. The system has fewer mechanical degrees of freedom and
correspondingly fewer coordinates. The movement of the molecule as a whole can be described
by specifying the x, ¥, and z components of the velocity of the centre of mass, and the three
components of the angular momenturn about the centre of mass.

There are then 3N - 6 remaining degrees of freedom and corresponding coordinates to describe
the internal motion (i.e., vibration) of the molecule. These coordinates are called the normal
coordinates. In the special case of a linear molecule, there are only two components of the
angular momentum, so that the number of normal coordinates is 3NV - 5 instead of 3V - 6. Each
type of vibration represents a way in which the molecule can absorb energy. As a result, we
expect that in general, the larger the molecule, the larger the heat capacity. Calculation of how
the contribution of each degree of freedom to the internal energy are determined is a main
concern of statistical mechanics, and is beyond the scope of this course. Here, we simply state
the most important results of the statistical-mechanical treatment of molecular motion.

i) The statistical-mechanical treatment of translation yields the result that each component
of the centre of mass velocity contributes R7/2 to the internal energy and therefore R/2
to the heat capacity. The heat capacity of a monatomic perfect gas is thus 3R/2.

(ii) It can also be shown by statistical mechanics that for nearly all molecules each
component of the angular momentum also contributes R/2 to the heat capacity.

(iii)  The classical-mechanical analysis of molecular vibration is based on a simple model that
treats a vibrating bond as two masses connected by as spring, The force required to
stretch the spring is proportional to the degree of stretching, and the model is described
as a harmonic oscillator. According to classical statistical mechanics, each normal
vibration contributes R to the heat capacity.




This division of the heat capacity into translational, rotational and vibrational components is
called the Equipartition Theorem.

For many molecules, substantial discrepancies are observed between experimental heat
capacities and those calculated on the basis of the Equipartition Theorem. The most obvious
respect in which the theory disagrees with experiment is that it fails to account for the facts that
the heat capacity varies markedly with temperature, and that this temperature-dependence
differs from molecule to molecule. Even for simple molecules, predicted values of heat capacity
at 298 K can be as much as 30 - 50% too low.

The inaccuracy of the Equipartition Theorem can explained by the quantum theory of molecular
motion. According to this theory, molecules assume discrete rather than continuous values for
their energy. In contrast, the Equipartition Theorem assumes that the molecular energies can
assume all values. The accuracy of classical models can be assessed by comparing the spacing
between the energy levels with the quantity &7 (where & - Boltzmann’s constant - is R divided
by Avogadro’s number). T is the classical estimate of the average energy of a single harmonic
oscillator, and can be regarded as an estimate of the average thermal energy at temperature 7.
The spacing between translational energy levels is very much less than &7, so the continuous
approximation is very good. The spacing between rotational energy levels is also usually much
less than &T for heavy molecules, but can be comparable with, or even greater than k7T for light
molecules at low temperatures. In contrast, the spacing between vibrational energy levels is
nearly always much greater than k7. Consequently, the continuous approximation is
reasonable only at high temperatures (usually several thousands of K), and greatly
overestimates the vibrational contributions at lower temperatures.

Learning Objectives

Knowledge

6.1.1 Identify components of molecular energy.

6.1.2 Define term ‘mechanical degree of freedom’.

Comprehension

6.2.1 Identify various possible degrees of freedom.

Application

Calculate:

6.3.1 Number of mechanical degrees of freedom for linear molecules.

6.3.2 Number of mechanical degrees of freedom for nonlinear molecules.

6.3.3 Heat capacities and heat capacity ratio by application of Equipartition Theorem.
Analysis

6.4.1 Identify coordinates corresponding to different degrees of freedom.

6.4.2 Give qualitative explanation for the heat-capacity anomaly in terms of quantum theory.



Physical Chemistry Lecture 7: Summary

Thermochemistry is concerned with the application of thermodynamic principles to the
study of chemical reactions. In this and the next few lectures we shall illustrate various ways in
which the First Law of Thermodynamics can be applied. In particular, we shall be concerned
with estimation of enthalpy and internal energy changes for chemical reactions that cannot be
studied experimentally, either because they simply do not occur or because they proceed too
slowly to produce a satisfactorily measurable enthalpy change.

Chemical reactions are most often characterised thermodynamically in terms of their enthalpy
change. Reactions for which AH is negative (heat is given out) are said to be exothermic, while
reactions for whichaH is positive (heat is absorbed) are said to be endothermic.
Thermochemical analyses depend ultimately on the availability of accurate measurements of
enthalpy changes. For some reactions these can be determined by calorimetry, which in its
simplest form involves measuring the temperature rise caused by a chemical reaction carried out
in an apparatus of known heat capacity. The heat capacity of a calorimeter is determined by
measuring the temperature rise due to a precisely-known heat input, usually produced by
passing an electric current through a resistance.

The accuracy of a calorimetric measurement depends on how successfully heat losses to the
environment are eliminated. The elimination of such losses is much easier to achieve by use of
a closed, constant-volume reaction vessel. The quantity that is measured in such experiments is
the heat absorbed or evolved at constant volume, which is proportional to the internal energy
change, AU. The heat evolved or absorbed is proportional to AH only in calorimetric
measurements at constant pressure, which are, however, much more difficult.

The relation between AU and AH involves the volume change for the reaction:

AH = AU + A(pV) )

For reactions occurring in condensed phases the ‘pV’ term is nearly always insignificant, so
that in these cases there is essentially no difference between the energy and enthalpy changes.
For reactions involving gaseous products or reactants, the ‘pV” term can be estimated by use of
the ideal gas equation (if the pressure is not too great) so that

AH = AU + RT An (2)

where an is the change in the number of moles of gaseous reactants, as determined from the
balanced equation.

Calibration of a calorimeter by use of electrically-generated heat input relies on Joule’s
expression for the heat evolved by passage of current / through resistance R in time t:

q = PRt 3)

If this heat input results in a temperature rise AT, the heat capacity C of the calorimeter is given
by

== @

Application of the First Law of Thermodynamics to chemical reactions makes use of the fact
that the internal energy and enthalpy are functions of state, so that changes in these functions
do not depend on intermediate steps. This is expressed as Hess’s Law of Constant Heat
Summation:




When initial and final states have different chemical compositions, AU and AH
do not depend on intermediate reactions.

The significance of this result is that an unmeasurable enthalpy change can be expressed as the
sum of measurable enthalpy changes. The most important class of reaction to which this is
applied is reactions that express the formation of a compound from its component elements.
The rules that pertain to the combination of reaction enthalpies are as follows:

1. When an equation is reversed, the sign of AH changes.
2. When a reaction is multiplied by a constant, AH is also multiplied by the same constant.
3. When identical numbers of moles of a species appear on both sides of an equation, that

species can be omitted.
Reaction energy and enthalpy changes are in general dependent on the temperature, as a result
of the temperature-dependence of the heat capacities of the reactants and products, and on the
states of reactants and products. Thus, energy and enthalpy changes should always be quoted
at a particular temperature, and referred to balanced chemical equations showing the state of
each participating substance.
To facilitate combination and comparison of enthalpy changes, standard states can be defined.

The standard state of a substance is that in which it is stable at 298.15 K and 1 bar (where 1 bar
= 100 kPa ~ 1 atm). A standard enthalpy of reaction refers to a reaction in which all the

reactants are in their standard states.

Learning Objectives

Knowledge

7.1.1 Define the terms ‘exothermic’, ‘endothermic’.

7.1.2 Define the standard state used in reference to enthalpy changes.

7.1.3 State the relation describing the heat evolved by passage of current through a resistor.
Comprehension

7.2.1 Explain the importance of minimising heat losses to the environment in calorimetry.
7.2.2 Describe the procedure for calibration of calorimeters.

Application

Calculate:

7.3.1 the heat evolved by passage of current through a resistor.

7.3.2 heat capacity of calorimeter from heat input and temperature rise.

7.3.3 enthalpy change from heat evolved/absorbed at constant volume.

7.3.4 enthalpy change from combination of intermediate reaction enthalpy changes.

7.3.5 heat evolved/absorbed from molar enthalpy change.

Analysis

7.4.3 Explain the equivalence of Hess’s Law and the First Law of Thermodynamics.




Problems

7.1

7.2(1)

(i)

(iii)

7.3(1)

(i)

7.4

7.5

7.6

7.7

Calculate the rise in temperature of 253.0 g water (specific heat 4.184 J/g) produced by
passage of 0.1032 A through a 100.0 W resistor for 60.00 s, assuming that none of the
heat generated is lost to the surroundings.

[7.3.1]

A bomb calorimeter was calibrated by passing a current of 3.212 A through a heater of

resistance 10.00 Q. If the temperature rose by 1.572 °C, caiculate the heat capacity of

the calorimeter.
[7.2.2,7.3.1,7.3.2]
When 100g of n-hexane was burned under pressure of oxygen in this calorimeter, the

temperature rise was 2.630 oC. Calculate the molar internal energy of combustion, AU..

Use your value of AU/, to calculate the molar enthalpy of combustion, assuming the
validity of the ideal gas equation.

[7.3.3]
For which one of the following reactions
n-C,H, (1) + 12202(g) — 6CO,(8) + TH,0(g) 1)
n-CH,,(g) + %Oz(g) — 6CO,(g) +7H,0) @
n-CH (1) + 12—902(g) - 6CO,(g) + TH,00) 3)
is the enthalpy change the standard enthalpy of combustion of n-hexane?
[7.1.2]

By addition of the required equations, show how the standard enthalpy of combustion
is related to the enthalpy change for the other two reactions.
[7.3.4]

The enthalpy of vaporization of water at its boiling point (373 K) is 40.71 kJ mol-1.
What is the energy required to vaporize 1 kg of water at its boiling point? (Molar mass

of water is 18.016 g mol-1).
[7.3.5]

A room of capacity 75 m3 at 298 K and 1 atm is to be cooled by an evaporative air
cooler. What mass of water must be vaporized to cool the air in this room by 10C? The
enthalpy of vaporization of water at 25¢C is 43.8 kJ mol-1, and the heat capacity of air
is 21 J K-1mol-1.

[7.3.5]
A calorimeter devised by Lavoisier and Laplace measured the heat evolved in chemical
reactions by the amount of ice melted. Given that the enthalpy of fusion of ice is 6.008

kJ mol-1, calculate the mass of liquid water that would be produced by complete
combustion of 3.5 g of graphite:

Clgr) + O,(8) — CO®)  AH =-393.5kI mol’

assuming no energy losses to the surroundings.
{7.3.5]
Calculate the standard internal energy of formation (at 298 K and 1 atm pressure) from

its standard enthalpy of formation, which is -479.0 kJ mol-1. Other data are as follows:
compound molar mass/g mol-t  density/g cm-3

C4HgO2(1)  88.10 0.900
H>O(1) 18.02 0.997
CH3COOH(1l) 60.05 1.044

CHsOH(l) 46.07 0.785




Solutions

7.1  The heat evolved by passage of the current is
q = Rt

(0.1032 A)” x (100.0 Q) x (60.00 5)
63.90J

This is related to the temperature change by
q = mc AT
so that

(63.90 1)
(253.0 g) x (4.184 T g'1)

= 0.06K

7.2(1) If 3.212 A passes through a 10.00 © resistor for 28.00 s, the heat generated is
q, = Rt

(3.212 A) x (10.00 Q) x (28.00 s)

i

2.888 k.
If this produces a temperature rise of AT = 1.572 K, the heat capacity C is

_ 4
C=37

_ (2888 k)
(1.572 K)
1.837KJ K.

i

(ii) The temperature rise on combustion of 1.000 g of hexane is 26.24 K. The heat
generated is therefore

q, = CAT

(1.837 KT K1) x (26.24 K)
48.20 kJ.

Since the molar mass of hexane is 86.18 g mol-1, the number of mol combusted is

(L90Y _ - 1.160x 107 mol.
(86.18 gmol )

n =

The molar internal energy of combustion is therefore




- (48.20 kJ)
(1.160 x 10°Z mol)

_4 155 kJ mol .

(ili)  The relation between the internal energy and enthalpy changes is

AH, = AU, + RT An.

For the reaction in question, the change in the number of moles in the gas phase is 6 -
1972 = -7/2 per mole of hexane, so that at 298 K,

RT An = (8.314] K-lmol-l) x (298 K) x (-3.5 mol)
=-8.672 kJ.

The enthalpy change is therefore

AH, = -4155kJ mol” - 8.672 kJ mol”
= -4 164 kJ mol .

7.3(1) The enthalpy change of reaction 3 is the standard enthalpy of combustion, since each of
the participating substances is in its standard state.

(i)  For reaction 1, the enthalpy change is obtained by adding seven times the enthalpy of
vaporization of water to the standard combustion enthalpy:

CH, W + L0, - 6COM + THOW  AH = aH,

7H,0() — 7H,0(g) AH = 7AH,,,(H,0)

CeH,,» + 20,8) —» 6C0,@®) + TH,00) AH = AH, +TAH,,,(H,0)
For reaction 2, the enthalpy change is obtained by subtracting the enthalpy of
vaporization of hexane:

CH, O + 20,) » 6CO@ + THOD  AH = A,

C6H14(g) - C6H14(1) AH ='AHvap(C5H14)

CH @ + D0,e) > 6C0,e) + THOW  AH = Ay~ AH,,(CH )

7.4  The heat required for vaporization of 1 kg of water is




£
I

nAH,,,

-1
- (0000 gke)) o (40.71 ks mol™)
(18.02 g mol ")

2.259 MJ kg'!

at the boiling point.

7.5  The number of moles of gas in the room is
_ oV
" RT

(1.013 x 10° Pa) x (75 m®)
(8.314 T K 'mol’™") x (298 K)

= 3 066 mol.
The heat removal required to lower the temperature of this quantity of gas is

g = nc AT
= (3066 mol) x 21 T K™ mol™) x (10 K)

6.439 x 10° J.

The number of moles of water that this corresponds to is

(6.439 x 10° J)

(43.84 x 10° Y mol ™)

The mass is therefore

= 14.70 mol.

(14.70 mol) x (18.02 g mol) = 265 g.

7.6  The heat liberated by 3.500g graphite is
_ (3.500 g)
(12.011 g mol )

-114.7 kJ.
The mass of water is therefore

x (-393.5 kJ mol ™)

(114.7 kJ)

(18.02 g mol ") x 1
(6.008 kJ mol ™)

M

= 344¢g
7.7 The molar volumes of the species in the reaction

C,H,OH() + CH,COOH()) — CH,COOC,H,() + H,0()

are as follows;




(46.07 g mol ™)

C,H,OH(): Vi = . = 58.7 mL mol
(0.785 g mL")

CH,COOH()  V,, = &005emol) _ 5754y mor
(1.044 g mL_l)

CH,COOCH ): V,, = EE10BMOL) _ 79 oy ot
(0.900 g mL_l)

H,00): v, = UB02egmol) _ 1507 mL mot”.
0,997 gmL™)

The change in volume is therefore
AV, = 18.07 + 979 - 575 - 587
= -0.23mLmol'1,

so that

A

Aﬁ" - pAV,
-479.0 K3 mol” - (1.013 x 10° Pa) x (2.3 x 10" m® mol )

Il

- 479.0 kJ mol

which is seen to be negligibly different from the given enthalpy of reaction. This is
almost always the case for reactions where the reactants and products are in condensed
phases.




Physical Chemistry Lecture 8: Summary

In this lecture we illustrate the operation of Hess’s Law of Constant Heat Summation by
considering the use of enthalpies of combustion (which are usually very large and readily
measurable) to estimate the enthalpies of formation for a series of six-carbon cyclic
hydrocarbons. This type of calculation is probably the most important use for combustion
enthalpy data, since for the vast majority of compounds, enthalpies of formation are not
directly measurable. The general procedure involves addition of appropriate multiples of the
equations and their corresponding enthalpy changes, according to the rules introduced in the
last lecture.

The general procedure can be illustrated for cyclohexene for which the enthalpy of combustion
and other relevant data are as follows:

CHO + 0 - 600 @) + SHOM Al = 3747k
Clen + 08 — COMg) AH,ge = -393 kJ
H(® + 300 — HO0 AH,, = -2851d
CH, (1) - CH, (@ AH,, = 34KkJ

(i) To get liquid cyclohexene as the product we need to reverse the combustion reaction;

6COLg) + SH,0 —  CH, () + 1—2702(;;) AHypy = 3747 K]

(i) To ensure the cancellation of six moles of carbon dioxide we multiply the second reaction
by 6:

6C(gr) + 60,(8) — 6CO, 8 AH,po = 6x-393 = -2358Kk]
(iii) Likewise, we multiply the third reaction by 5:
5 —-— —
SHy(e)  + 30,0 -  SHOM  AHyy = 5x-285 = -1425k])

When we add these reactions and their enthalpy changes together, we obtain the enthalpy of
formation for cyclohexene in the liquid phase:

6Cg) + SHy(® -  CeH M
AHye = 3747 - 2358 - 1425 = -36KJ. -

If we want the enthalpy of formation in the gas phase, we have to combine this with the
enthalpy of vaporization:

6Cen  + SH(g) — CH D  AH,, = -36k]
C.H, ) o CH,(8) AH,, = +34K
6C(gr)  + SHy(®) — CH(8) AHy, = -36+34 = -2kl.

The enthalpy of vaporization used in this calculation is that pertaining to 298 K, while the
enthalpy of vaporization that is usually tabulated is that at the normal boiling point. As we will
see in the next lecture, the difference between these values can be estimated in terms of the heat
capacities of the liquid and vapour over this temperature range.




Exactly similar reasoning can be applied to estimate the enthalpy of formation of cyclohexane in
the gas phase. The additional thermochemical data that are required here are the enthalpy of
combustion

CH,(0) + 90,(5) — 6CO@ + 6H,00)  AHy

and the enthalpy of vaporization, which is approximately the same as for cyclohexene:

=-3916kJ

CH,»H - CH,,(8) AH,o0 = 34 K]

The resulting scheme is

6CO,E + 6HOM >  CH,M) + 908 AH,,=3916k)
C(H, () - CH,@® AH, 40 =34 k]
6Cen + 60® o 6CO AH . = -2 358 k]
6H(® + 30, o 6H00 AH,,. = -1710kJ
6Clgr) + 6H(p o CH,® AH 4 = -118 K.

From the enthalpies of formation of cyclohexane and cyclohexene, the enthalpy of
hydrogenation in the gas phase can be estimated:

6C(gr)  +  6Hy(g) - CeH,,(8) AH poo =-118 kJ
CeH (@ - 6C(gr) + SHy(g) AH, =2kl
Cetio® +  Hy® - CgHy,(®) AH,4, = -116 K.

The operation of Hess’s Law is illustrated by direct use of the combustion enthalpies to
estimate the enthalpy change for this reaction:

CH,®m + Ho® 6CO(e) +  SHO0)  AH,,=-3747k]

2 - 298
CsH,y(8) - CH, M AH o = -34 KJ
6CO,g + 6H,0() — CH,MD) + 90,8 AH,5 =3 916 KJ
CH,,( - CH (2 AH o, =34 K]
H(@ + 300 - HOO AH,,, = -285 kI
CH o8 + H,(g) - CH (g AH oo = -116 KJ,

which is the same result as obtained less directly from the enthalpies of formation. This means
that the set of thermochemical data is internally consistent.

The enthalpies of hydrogenation estimated in either of these ways for the unsaturated
hydrocarbons cyclohexene, cyclohexadiene and benzene can be compared by working out the
average enthalpy of hydrogenation per double bond. For cyclohexadiene, this average enthalpy
is -226/2 = -113 kJ per mole, which is almost the same as the enthalpy of hydrogenation of




cyclohexene. For benzene, the average energy per double bond is -204/3 = -68 kJ/mol, which
is very different. In other words, if benzene could be regarded as composed of three double
bonds equivalent to that in cyclohexene, the heat of hydrogenation would be expected to be 3 x
-116 = -348 kJ/mol. The observed difference in enthalpy is called the resonance energy and
results from electronic stabilization of the benzene molecule. The enthalpy data also show that
the enthalpy of hydrogenation of a double bond depends on the molecule in which it is
contained; for example, the enthalpy of hydrogenation of cyclohexadiene to cyclohexene is -
226 - (-116) = -110 kJ/mol, which is different from the enthalpy of hydrogenation of
cyclohexene to cyclohexane.

The enthalpy of the process by which a compound is formed from its elements is a measure of
the total energy of all the bonds in the molecule. Crude estimates of enthalpies of formation can
therefore be made by adding the enthalpies associated with the various bonds in a molecule.
These bond enthalpies can be obtained as average values by applying Hess’s Law to the
enthalpies of dissociation in the gas phase of molecules that contain only one kind of bond.
Thus, by combining the enthalpy of formation of methane with the enthalpy of dissociation of
the hydrogen molecule and the enthalpy of sublimation of carbon, the average enthalpy of a
single CH bond in methane is esimated to be 416.25 kJ/mol:

CH(g» — Clgn + 2Hy(g) AH g = -(-74.85) = 74.85 kJ
Clgr) - C@ AH o0 =718.38 kJ

2H,(g) — 4H(g) AH o =2 x 435.88 = 871.76 KJ
CH,(e) — A4H@+ C® AH 0 = 1664.99 = 4 x (416.25 kJ)

Estimation of enthalpies of formation by combination of this value for a CH bond with other
bond enthalpies can result in substantial errors (several kJ per bond).

Learning Objectives:

Knowledge

8.1.1 Define standard enthalpy of combustion, resonance energy.
Comprehension

8.2.1 Explain the origin of the difference between enthalpies of reaction involving substances
in different states.

8.2.2 Describe how estimates of resonance energy can be made from thermochemical data.

8.2.3 Identify the assumptions inherent in the estimation of enthalpies of formation from
individual bond enthalpies

Application

8.3.1 Calculate enthalpies of formation and hydrogenation by addition of reactions and
corresponding enthalpy changes

8.3.2 Demonstrate the operation of Hess’s Law by calculation of hydrogenation enthalpies
from enthalpies of formation and combustion.

8.3.3 Apply Hess’s Law to the development of schemes for estimation of bond enthalpies.

8.3.4 Estimate enthalpies of formation from bond enthalpies.




Problems:

8.1

8.2(i)

(i)

The enthalpy of combustion of ethane to carbon dioxide and water is -1560 kJ mol-1.
What is the enthalpy change when 2 mol ethane is formed from its combustion products
under the same conditions?

[7.3.5]
From the data for the two isomers of but-2-ene
cis-CH (g) + 60,(g) — 4CO,(g) + 4H,00) AH = 2710KkJ mol”
trans-C,H(g) + 60,(8) — 4C0,(g) + 4H,0() AH = -2707 kJ wol "

calculate the enthalpy of the isomerisation
cis-C4H8(g) - t:rans~C4H8(g)
Repeat the above calculation using instead the enthalpies of formation:
4C(gn) + 4H(g) — cisCHy(g) AH = - 6.99 kJ mol ™’
AC(gr) + 4H(g) — trans-CHy(g) AH = -11.17 kI mol”

Comment on the likely cause of any discrepancy between the two estimates.
[8.3.1,8.3.2]




Solutions:

8.1

8.231)

(ii)

From the given information, the enthalpy of formation of one mole of ethane from its
combustion products is +1560 kJ. For 2 moles the enthalpy change is therefore 2 x
1560 kJ = 3120 kJ.

From the combustion reactions

cis-C,Hy(g) + 602(g) — 4C0,(g) + 4H20(1) AH = -2710K)
4CO,(8) + 4}120(1) — trans-C H(g) + 60,(g) AH = +2707 kJ
cis-C4H8(g) — trans-C H(g) AH = -3K]
From the formation reactions
4H,(g) + 4C(gr) — trans-C,Hg(g) AH = -11.17 kJ
cis-C,Ho(g) — 4H () + 4C(gr) AH = -699kJ
cis-C4H8(g) — trans-C4H8(g) AH = -4.18 k]

The discrepancy is probably due to the large difference in the magnitudes of the
formation and combustion enthalpies, and hence in their absolute errors. The
combustion enthalpies are quoted to the nearest kJ, while the formation enthalpies are
quoted to the nearest 0.01 kJ.




Physical Chemistry Lecture 9: Summary

In the previous lecture we saw how the enthalpy of formation for an organic compound can be
estimated from enthalpies of combustion by addition of suitable multiples of reactions and their
corresponding enthalpy changes. All the examples we considered can be regarded as
applications of a general formula for calculation of enthalpies of formation from enthalpies of
combustion:

BH = - D VAH, )

where AH; is the combustion enthalpy of compound i, v; is the stoichiometric number of

compound i (positive for products, negative for reactants), and the summation is over all
species in the formation reaction. For example, in the reaction

6C(gr) + 5Hy(g) - CH, () (2)
we have
v=1 AH=-3747TK] for cyclohexene
v=-5 AH =-285 k] for hydrogen
v=-6 AH =-393 k] for graphite
so that
A!H=-[1><3747-6><(—393)-5><(-285)]=—36k], (3)

as we found previously. From our earlier treatment of this particular reaction, it is clear that the
equations that we combined were for reactions involving the formation of each species from its
combustion products. As we saw earlier by application of Hess’s Law, the same result would
be obtained if we used reactions involving formation of each species from its elements. This
procedure is more generally useful, since some substances do not react with oxygen. We can
therefore summarise the use of Hess’s Law for determining the enthalpy of any reaction by the

general formula
AH = ) VAH, @
i

where Ad{; is the enthalpy of formation of compound {. from its elements. The use of this

formula requires that all species be in the appropriate states (usually the standard states). The
meaning of this equation is that the enthalpy of any reaction is the same as the total enthalpy
change involved in decomposing all reactants into their elements and assembling the products
from these elements. From this interpretation it is clear that if a species participating in a
reaction is an element in its standard state, it will make no contribution to the enthalpy change
of such a process. For this reason, we adopt theconvention that the enthalpy of formation of
each element in its standard state is assigned the value zero.

In this lecture our primary concern is the thermodynamic treatment of cyclic processes, i.e.,
those in which the starting and finishing states are the same. Since the internal energy and
enthalpy depend only on the state of the system, the changes in these functions in cyclic
processes are zero. The great importance of such processes lies in the fact that the enthalpy
change of one particular step in the cycle can be expressed in terms of the enthalpy changes of
all the other steps.

A simple example illustrating the usefulness of thermodynamic cycles is the problem of
estimating the enthalpy of vaporization of a liquid at some temperature T lower than the boiling
point T, given the enthalpy of vaporization AH,,, at the boiling point and the respective

average (constant) heat capacitics ¢, and ¢, of liquid and vapour over the appropriate




temperature range. The steps in the cycle are (i) heat the liquid from T to T}, (ii) vaporize the
liquid at T}, and (iii) cool the vapour to 7.

Liquid (at T,) - Vapour (at Tb)
AH, =AH,,,
T AH, =c, (T,-T) l AH, = c, (T-T,)

Liquid (at T) - Vapour (at 7)
AH =7

The sum of all these enthalpy changes is zero, so that
AH = AH, + AH, + AH,
= AH,,, + (cp,1 - )Ty - T). (5)

Since the heat capacity of a liquid is always greater than that of its vapour, the enthalpy of
vaporization at a lower temperature is expected to be greater than at the boiling point. This
result is a special case of a general relation that can be derived between the enthalpy change of a
chemical reaction at two temperatures Ty and T>. The steps in the cycle are essentially the same:

(i) heat the reactants from T to Ty, (ii) carry out the reaction at T, and (iii) cool the products
from T to T. If the heat capacities of the species in the reaction are constant, the requirement
that all the enthalpy changes cancel out around the cycle yields the result

AH(T,) = AH(T,) + Acy(T,-T)) )

Ac, = Zvicp.i
i
is determined by use of the stoichiometric numbers in the same way as implied in equations 1

and 4. In the more general case where the heat capacities of reactants and products depend on
temperature,

where

TZ
AH(T)) = AH(T,) + [Ac, dT. Y
T

1

A particularly important thermodynamic cycle in which all the steps are chemical reactions is
the Born-Haber Cycle. This is useful for calculating the lattice enthalpies of ionic solids, i.e.,
the enthalpy of formation of the solid from its ions in the gas phase. Thus, for example, the
lattice enthalpy of the sodium halide NaX

Na*(g) + X(g) —  NaX(s) AH = AH

can be determined in terms of:

®

lattice

(1) the standard enthalpy of formation of NaX from its elements:

Na@s) + X, — NaX AH = AH°(NaX)

(where ‘ss’ refers to the standard state of the halogen),




(ii) the enthalpy of sublimation of Na:
Na(s) — Na(g) AH = AH_,(Na}
(iii)  the gas-phase ionization enthalpy of Na:

Na(g) — Na'(g) + e(® AH

AH. (Na)

10n
(iv)  the enthalpy of sublimation or vaporization of X from the standard state (this is of
course zero for fluorine and chlorine):

1 1 —
Exz(ss) — Exz(g) AH = AI_Isub;'vatp(XZ)

) the enthalpy of dissociation of X:

e - X@ AH = FAH 3, (X))
(vi)  the gas-phase electron affinity of X:
X + e(g) - X(g) AH = AH_(X)
The Born-Haber cycle incorporating these enthalpy changes is as follows:
Na'(g) + e(g) + X(g) —_— Na*(g) + X(g)
AH = AH_ (X
T AH = AH. (Na) eal%)
Na(g) + X(g)
T AH = AH_,(Na)
Na(s) + X(g) AH = AH, ;.
-1
T AH = EAH issX)
1
Na(s) + EXZ(g)
_ 1
T AH = EAHsub/vap(X2) '
Na(s) + 3X,(ss) — NaX(s)

AH = A]H°(NaX)

Application of the condition that the enthalpy changes add to zero results in
_ 0 1 1
AH = A}H (NaX) - EAHsub/vab(x2) - SAH (X)) - AH_, (Na)

lattice 2

- AH__(Na) - AH(X).




Learning Objectives:
Knowledge

9.1.1 State the general formula for the enthalpy of reaction in terms of enthalpies of formation
of reactants and products.

9.1.2 State the convention involved in the use of formation enthalpies to calculate enthalpies
of reaction.

9.1.3 Define, by use of appropriate balanced chemical equations, the terms ‘sublimation
enthalpy’, ‘ionization enthalpy’, ‘electron affinity’, ‘lattice enthalpy’.

Comprehension

9.2.1 Give a physical interpretation of the use of formation enthalpies to calculate enthalpies
of reaction.

9.2.2 Explain why the overall enthalpy and internal energy changes for cyclic processes are
Zero.

9.2.3 Describe a thermodynamic cycle that could be used to estimate the effect of temperature
on the enthalpy change for a process.

Application

9.3.1 Express the change in a thermodynamic function associated with a chemical reaction in
terms of stoichiometric numbers and properties of participating substances.

Calculate
9.3.2 enthalpies of reaction from enthalpies of formation.
9.3.3 enthalpy of vaporization of a liquid at a temperature lower than its boiling point.

9.3.4 enthalpy of reaction at a different temperature, given the value at one temperature and
heat capacities (assumed to be constant) of reactants and products.

9.3.5 lattice enthalpies by use of the Born-Haber cycle, given relevant data.
Analysis

9.4.1 Demonstrate the equivalence of the Born-Haber cycle and Hess’s Law by appropriate
addition of equations and corresponding enthalpy changes.

Problems:
9.1(i) What convention is implied by the expression of an arbitrary enthalpy of reaction in
terms of the enthalpies of formation of the reactants and products?
[9.1.2]

(ii)  Determine the standard enthalpies at 298 K for the following reactions
2Na(s) + MgCl2(s) —  Mg(s) + 2NaCl(s)

2A1(s) + Fe,0,5) —  ALOJ(s) + 2Fe(s)
CuSO,(s) + SH,0() -  CuSO,.5H,0(s)

given the standard enthalpies of formation;




9.2

9.3

9.4

9.5

AH/KY mol !

MgCl,(s) -641.3
ALO,(s) -1675.7
NaCl(s) -411.2
Fe,0,(s) -824.2
CuSO 4(s) -771.4
CuSO,.5H,0(s) -2279.7
H,0() -285.8

[9.3.2]

Construct a thermodynamic cycle to determine the enthalpy of vaporization of water at
298 K, and hence determine the heat absorbed at constant pressure by the vaporization
of 1 kg of water at this temperature. You may assume that the heat capacities of steam
(33.58 ] K-1mo!-1) and water (75.29 J K-1mol-1) are constant between 298 and 373 K3

[9.2.3,9.3.3]
The manufacturers of an evaporative air cooler that uses iced water claim that their
device is more efficient (i.e., absorbs significantly more heat for each mass of water
vaporized) than other models that use water at 250C. Use a cycle similar to that
developed in Problem 9.2 to compare the enthalpy of vaporization of water at 25°C and
00C, and hence comment on the manufacturer’s claim of greater efficiency.

[9.2.3,9.3.3]
Devise a thermodynamic cycle to calculate the enthalpy change for the process

H,0(s, 273 K) — H,O(g, 298 K)

given the following data:
H0() — HON T =273K AH = 6.011 kI mol”
H,0() — H,0(g) T = 373K AH = 40.71 kI mol”
H,0() ¢, = 7529 JK 'mol”
O(g) ¢, =33.58 JK " mol™
H,0(g P

[9.2.3,9.3.3]
Set up an appropriate Born-Haber Cycle and determine the lattice energy of MgCl, by

use of the following data:

Mg(s) — Mg AH = 167.2 k) mol™’
Mge) — Mg’ + elg) AH = 737.7kJ mol’
Mg'g) — Mg (g) + e(g) AH = 1450.6 kJ mol™
Cle - 2CKg) AH = 241.6 kJ mol™
Cltg) + e(g) — CI(g) AH = -364.7 kJ mol
Mg(s) + CL(g) = MgCL(s) AH = -641.3 kI mol”

[9.3.5]




9.6  Given the values of the enthalpy changes for the following reactions involving Na:
Na(s) —  Na(g) AH = AH_, (Na)
Na(g) — Na'(g) + e(g) AH = AH. (Na)

10on

and the halogens (kJ mol" Iy,

1x,69 > 1x,0 0 0 15 31
Ix,® - X@ 79 21 97 75
X(g) + e(g) — X(g) 339 354 330 -301

Na(s) + -é—Xz(ss) > NaX(s) -569  -410  -360  -288

calculate the lattice energies of the four sodium halides.
[9.3.5]

Solutions:

9.1(i) By convention, the enthalpies of formation of the elements in their standard states are
Zero.

(ii)  Use the formula
0 0
BH® = D v, AH,]
1

with the convention that the enthalpies of formation of the elements in their standard
states are zero. This results in:

@ AH = 2AH°(NaCLs) - AH (MgCl,, 5)
=-822.4 + 6413
= -181.1 kJ mol”
@) AH’ = AH'(ALO,,s) - AH (Fe,0,,5)
-1675.7 + 824.2

-851.5 ki mol "’
AH(CuSOSHO,5) - SAH'(H,0,1) - AH(CuSO,, s)
-2279.7 + 1429 + 7714

(i) AH°

79.3 k] mol-1,

]

9.2  Itisrequired to calculate the enthalpy change for the process
H,0(, 298 K) — H,O(g, 298 K).




A thermodynamic cycle that achieves this transformation is

H,0(, 373 K) - H,O(g, 373 K)
AH,

T AH, L AH,

H,0(l, 298 K) - H,O(g, 298 K)
AH

from which it follows that
AH = AH, + AH, + AH,,
The various enthalpy changes are:

AH, = CPAT

(7529 TK ! mol'!) x (373 K - 298 K)

5.646 kJ mol

= 40.71 kJ mol ' (as given)

(33.58 K mol™") x (298 K - 373 K)
= 2.518 kI mol’

AH = 5646 + 40.71 - 2.518

43.84 kJ mol .

il

Vaporization of the mass of 1 kg will therefore require
(1000 g kg™

(18.02 g mol )
2.430 MJ kg

x (43.84 kI mol ™)

at 25oC,

9.3  For evaporation of water at 0oC, the terms in the cycle are

AH, = (7529 7K mol") x (373K - 273 K)
= 7.529 kJ mol”

AH, = 40.71 kJ mol’’

AH, = (33.58 JK ' mol ) x 273K - 373 K)

3
-3.358 kJ mol*

AH = 7529 + 4071 - 3358 = 44.88 kJ mol .




9.4

9.5

AH,

AH,

AH,

AH

The values for 298 K (43.84 kJ mol-1) and 273 K (44.88 kJ mol-1) differ by only
(1.04/43.84) x 100% = 2.4%. The use of chilled water in the cooler appears not o
result in substantially greater efficiency (especially when one considers the amount of

energy required to chill the water in the first place!).

The required thermodynamic cycle is

H,0(, 373 K) > H,0(g, 373K)
AH,
T AH, VAH,
H,0(, 273 K) « H,0(s, 273K) - H,0(g, 298 K)
AH, AH
where

AH = 6.008 kJ mol
AH, = (7529 TK ' mol™) x (100 K) = 7.529 kJ mol”'
AH = 40.71 kJ mol’’

3

AH, = (3358 JK mol ) x (75K) = 2.519 kI mol”

The Bormn-Haber cycle is

AH
Mg (g) + 2e(g) + 2CIg) > Mg™(g) +
Mg¥(g) + e(g) + 2CI(g)

AH
Mg(g) + 2CI(g) L

f

Mg(s) + 2Cl(g)

1 v

Mg(s) + Cly(g) > MgCL(s)

s

AH = 56.77 kJ mol .

2CI(g)



9.6

We have AH | = 241.6, AH, = 167.2, AH3y = 737.7, AH, = 1450.6, and AHs =2 x
(-364.7) = 729.4 kJ/mol. Therefore

AH'(MgCL) = AH, +AH,+AH, +AH, + AHg + AH,
AH, = AH'(MgCl)-AH, -AH,-AH,-AH, - AH,
= -641.3 - 241.6 - 167.2 - 737.7 - 14506 - 729.4
= -3967.8 kI mol .

The Born-Haber Cycle for the calculation of lattice energies of NaX is given in the
summary. The numerical results can be determined by application of the resulting
formula:

lattice AfH O(Nax) B %—AHsub/vab(X2) ) %AHdiss(X2) ) AHsub(Na)
- AH, (Na) - AHo(X).
For NaF: '
lamice = ~909 - 0 - 79 - 108 - 502 - (-339)
= - 919 kI mol .
For NaCl:
tamice = ~310 - 0 - 121 - 108 - 502 - (-354)
= -787 kI mol .
For NaBr:
AH .. .= -360 - 15- 97 - 108 - 502 - (-330)
= -752kJ mol ™.
For Nal:
= -288 - 31- 75 - 108 - 502 - (-301)

lattice

il

- 703 kI mol .




Physical Chemistry Lecture 10: Summary

In our previous lecture on thermochemistry, we saw how the fact that the change in the
thermodynamic functions in cyclic processes is zero allows us to estimate energy changes for
processes that cannot be studied directly. In this lecture, we show that consideration of cyclic
mechanical processes leads naturally to the introduction of a new thermodynamic function: the
entropy.

Cyclic mechanical processes involving expansion and compression of gases have been of
interest since the invention of the steam engine over two centuries ago. Even though steam
engines are not often used today, cyclic processes are still of great practical significance, since
they are ultimately responsible for the operation of all internal combustion engines. The first
attempt to develop a theoretical understanding of the operation of the steam engine was made
by Carnot, who invented a cycle consisting of four basic steps applied to an ideal gas:

@) Isothermal expansion at temperatureT?}, from Vi to Va.

(i) Adiabatic expansion from V; to V3 (T decreases from T, to 7¢).
(iii) Isothermal compression atT, from V3 to Va4,

(iv) Adiabatic compression from V4 to V; (T increases from T to Ty,).

We can apply the First Law of Thermodynamics to each of these steps, as follows:

Step (i):
1%
AU = 0, q = -w = nRT, 1n(V—2), PV, = p,Y, (1)
1
Step (ii):
Y
qg =0, AU =w = nc(T.-T)), p,V, = p,V, (2)
Step (iii):
1%
AU = 0, q = -w = nRT, 1n(7§), psV, = p,V, (3)
Step (iv):
Y ¥
q=0 AU =w=ncT,-T), pV,=npV, %)

We can derive a relation between the volumes of the gas in the first and last steps by equating
the product of the left-hand sides of the ‘pV’ equations to the products of the right-hand sides:

VVIV,V, = V,ViV, V]
or
il ®)
v, TV,

With this result, we can connect the amount of heat ¢, absorbed at temperature T, to the
amount of heat g, given out at temperature T

V2
1

nRT1V3 nRT1V2 7
g. = - cn(i/:)—- cn(-‘;l—)- )]




Although these amounts of heat are not equal, it is clear from equations 6 and 7 that if the heat
transferred is divided by the temperature of the the transfer, the values of the quantity obtained
in this way are equal and opposite for the two isothermal steps. In other words, the change in
q(T )/T is zero around the cycle:

£y

h qc
L+ = = {. 8)
T. T,

In general, the heat gyey(T) transferred in a reversible process divided by the temperature T of
the process is equal to the change in a function known as the entropy, S:

_ Grey(T)
AS = e ©)

The above analysis of the Carnot cycle shows that the overall entropy change for the gas is
zero. It can be shown that any reversible cyclic mechanical process can be represented by
suitable combinations of Carnot cycles, and that the net change in ¢/T around such a cycle is
always zero. We therefore conclude that the entropy is a function of state.

The entropy change for an increase in the volume of an ideal gas is always positive, and can
clearly be written in either of the forms

AS = nRIn (‘—/l) = nR1n (2L (10)
SRy P,

which can be obtained by each other by use of the ideal gas equation of state. These results are
applicable even if the process is carried out irreversibly, since only the initial and final states
determine the entropy change. It is also possible to give a molecular interpretation of this
entropy change. When the volume increases, we have less information about the position of a
particular molecule in the gas. This suggests that an increase in the entropy of a system can be
associated with a decrease in information about its molecular arrangement.

The definition of the entropy change expressed by equation 9 can also be applied to phase
transitions of a pure substance, e.g., fusion or vaporization. The general formula for the
entropy of such a phase transition is

AS, = ir (1)

where AH; is the enthalpy of transition and Ty, is the transition temperature. Reversibility in

this context means that the two phases are in equilibrium (i.e., that the transition can proceed in
either direction). Since enthalpies of fusion and vaporization are always positive, the
corresponding entropy changes are also positive. Again, we can interpret these entropy
changes in terms of an decrease in information about the molecular arrangements in the
substance, or an increase in the disorder.

It is found that the molar entropy changes for vaporization of nonpolar liquids are fairly
similar, with values about 90 J/K/mol; this observation is known as Trouton’s Rule. In
contrast, the entropies of vaporization for polar substances (such as water and methanol) are
significantly higher. This is because strong interactions between molecules tend to result in
liquids that have more ordered structures. Since vaporization involves the destruction of this
relatively ordered arrangement, we expect the corresponding entropy change to be greater for
such substances.




Learning Objectives

Knowledge

10.1.1 Define the entropy change associated with a reversible heat transfer.

Comprehension

10.2.1 Describe the steps involved in the Carnot Cycle, and determine overall changes for the

thermodynamic functions.

10.2.2 Give a molecular interpretation for the entropy changes associated with expansion of

gases, and with reversible phase transitions.

10.2.3 Interpret deviations from Trouton’s Rule observed for polar liquids.

Application

Calculate the entropy changes associated with:

10.3.1 reversible heat transfer at a given temperature.

10.3.2 isothermal changes in the volume or pressure of an ideal gas.

10.3.3 reversible phase transitions (fusion or vaporization) given the appropriate molar

enthalpy change and transition temperatures.

10.3.4 cyclic processes applied to a system.

Analysis
10.4.1 Apply the First Law to determine the work and heat transfers in each step of the Carnot
Cycle.
10.4.2 Determine the relation between the ideal gas volumes in steps 1 and 3 of the Carnot
Cycle.
10.4.3 Demonstrate the constancy of the entropy in the Carnot Cycle.
Problems
10.1 The enthalpy of fusion of CCly at its melting point of 250.3 K is 2.47 kJ mol-1.
Calculate the entropy change in 2.35 mol CCly when it melts reversibly at 250.3 K.
[10.3.3]
10.2 Calculate the entropy change experienced by a mole of ideal gas when its pressure
doubles isothermally at 298 K. If the process were to take place at a higher temperature,
how do you think your result would be affected?
[10.3.2]
10.3 The enthalpy of vaporization of methanol is 38 kJ/mol at its normal boiling point of
64.50C. Calculate the entropy change in 3.72 mol of methancl vapour when it
condenses at this temperature.
[10.3.3]
10.4 A certain machine operates according to a reversible cycle that involves absorption of

heat g at temperature T and evolution of heat g, at a lower temperature T7. Derive an

expression for the entropy change in the system (i.e., the machine) associated with the
other steps in the cycle.
(10.3.4]




Solutions
10.1 The entropy change for reversible fusion is

AS=nA—;Iﬁ‘5—

m

3 -1
_ (2.47 x 10" I mol )
= (2.35 mol) x 2501 K)

2321K ",

10.2 The entropy change associated with the change in pressure is

AS = nRIn Y = -RIn2.
P,

Since for an ideal gas the temperature dependence of the work and heat of reversible
isothermal expansion are given by

Va Py
g =-w=nRTIn(==) = nRTIn (-7)
v, Py
the same will be obtained for the entropy change at any temperature,

10.3 We are given the enthalpy of vaporization, but we are also told that condensation

occurs. We therefore expect the enthalpy and entropy changes to be negative:

Ag — (372 mol)x (- 38K mol )
(337.6 K)
= -419TK™.

10.4  Since the cycle is completely reversible and the entropy is a state function, the change in
entropy around the cycle is zero. Therefore, the entropy change satisfies

_ 4 4 . _
AS = -i"“ ) T_ + ASother steps 0,
1 2
$o that
AS -h 4

other steps _T_ T.'




Physical Chemistry Lecture 11: Summary

We continue our discussion of the entropy changes of important types of processes by
consideration of heating a substance. To derive the entropy change for such a process, suppose
that absorption of a small quantity of heat g, at constant pressure by a mole of some substance

results in the increase of its temperature from 7T to T + 8T . The relation between the quantity of
heat and the temperature change is approximately

8q, = ¢, T M

for one mole of a substance. Suppose that the temperature changes from T to T + 8T. (The
approximate sign is included in equation 1 because in general the heat capacity depends on
temperature.) The entropy change caused by the absorption of this quantity of heat is

oT
Cr @

Taking the limit as 37 tends to zero, the total entropy change resulting from change in
temperature over some finite temperature range can be obtained by summing all these
increments of entropy, which is equivalent to evaluating the integral

—~

T,
e (1)

T dT. 3)

AS = S(T,) - S(T)) =

T

If the molar heat capacity is constant, as for a monatomic perfect gas, this reduces further to

T,
AS = ¢, In (;F--). 4)
1

Since the heat capacity is always positive, it is clear from this equation that the absorption of
heat and increase in temperature always correspond to an increase in the entropy. If the
temperature decreases, the entropy decreases. The entropy change resulting from heating at
constant volume is given by the same formulae, but with ¢, replaced by cy.

So far we have concentrated exclusively on calculating the entropy change for a system
experiencing various mechanical or thermal processes. In any such process in which the
system absorbs heat from or loses heat to the environment, the environment also experiences
an entropy change. We can determine this entropy change by assuming that the surroundings
act as an infinite reservoir of heat at a given temperature (which remains constant during the
process). The entropy change of the environment is therefore given by

ASemy = £ F» (5)
where the positive sign applies if the environment gains heat (i.e., the system loses heat) and
the negative sign applies if the environment loses heat (i.e., the system absorbs heat).

As we saw in earlier lectures, the internal energy is the crucial concept which emerges from
considering the relation between heat and work, but it must be observed that this provides us
with no basis for determining the natural direction of processes: it merely states that energy is
conserved. The entropy turns out to play a correspondingly significant role in deciding whether
such processes are spontaneous. However, in contrast to our earlier discussion, we are not
interested solely in the changes experienced by the system, but rather in the relation between
the entropy changes experienced by the system and by the environment in a given process. The
crucial importance of this relation is expressed by the Second Law of Thermodynamics:




"The direction of a spontaneous process is that in which the combined entropy
of the system and the environment increases".

ASyys + ASpm, > 0 6)

The First Law of Thermodynamics was arrived at by observation and careful experimentation,
and cannot be regarded as being provable from first principles. Similar remarks apply to the
Second Law; equation (6) merely sums up our extensive experience of natural processes. If a
process or machine that violated either of these principles were to be devised, the whole
intellectual edifice of thermodynamics would have to be reconstructed.

Much effort has, in fact, been expended in attempting to develop machines that violate the
Second Law of Thermodynamics. The most famous of these are known as perpetual motion
machines of the second kind, which are devices that are supposed to operate in a cyclic process
by extracting heat continuously from the environment. The Second Law can be used to
understand why such machines won’t work. For suppose that such a cycle involved the
absorption of heat g from the environment. Since the entropy change experienced by the
machine is zero (it operates in a cycle), the combined entropy change for the system (i.e., the
machine) and environment is

AS = AS,, + AS,,,

sYys§

q
=0- = 7
T @
the only way in which the Second Law can be satisfied is if ¢ is negative (i.e., the machine
gives out heat). This argument is equivalent to an alternative statement of the Second Law,
originally made by William Thomson (Lord Kelvin) and Max Planck:

“It is impossible to construct a cyclic engine that produces no result besides the
extraction of heat from a reservoir and its conversion to an equal amount of
work.”

Consideration of adiabatic irreversible processes gives rise to yet another statement of the
Second Law. To show this, suppose that an irreversible adiabatic process occurs between two
equilibrium states A and B of a system. If the system is restored to its original state A by a
reversible path, in which heat g,,, is transferred from a heat reservoir at temperature 7, the

overall entropy change for the systemin thecycle A -> B -> A is

q
ASsyS = SB - SA + ;-.ev = 0, (8)
while that for the environment is

q
AS,,., = -—,}?’—. (&)

By the Second Law, this process is possible only if
AS. +AS. . =5, -8, + %= d»v (10)

Sys env B A T T ?

so that the adiabatic irreversible process A -> B must correspond to an increase in the entropy.
This leads to an alternative statement of the Second Law:

"The entropy of an adiabatic system can never decrease.”

This statement has profound philosophical implications, for it is our experience of irreversible
processes that gives rise to the very concept of time. We also know that irreversible processes
do not continue indefinitely. If we regard the universe as an adiabatic system, the point at
which all irreversible processes in it have ceased can be regarded as the end of time.




Learning Objectives

Knowledge

11.1.1 State the Second Law of Thermodynamics.
Comprehension

11.2.1 Explain, in terms of the Second Law, the thermodynamic impossibility of perpetual
motion machines of the second kind.

Application
Calculate the entropy change
11.3.1 associated with changing the temperature of a system with a constant heat capacity.

11.3.2 associated with changing the temperature of a system with a temperature-dependent heat
capacity.

11.3.3 in the environment corresponding to absorption or emission of heat by & system.
Analysis

11.4.1 Prove the equivalence of the Second Law as expressed in terms of entropies of system
and environment and the Kelvin-Planck statement.

11.4.2 Use the above statement of the Second Law to show that the entropy increases in an
adiabatic irreversible process.

Problems

11.1 The heat capacity of water is 75.29 J K-1 mol-1. Assuming this to be constant, calculate

the entropy change in 1 kg water when it cools from 100 oC to 25 oC.
[11.3.1]
11.2  The heat capacity c, of graphite is given by the empirical equation

¢ UK mol") = a + bT + <
T
where a = 16.86, b = 4.77 x 10-3 K- and ¢ = -8.54 x 105 K2. Calculate the change in

entropy of 5.64 mole graphite when it is heated from 300 K to 400 K.
[11.3.2]

11.3 The heat capacity of copper is ¢, = 24.44 J K-1 mol-! (and assumed to be constant). A

block of copper of mass 127 g cools from 400 K to 300 K, and the heat evolved is
absorbed by the surroundings at 300 K. Calculate (i) the heat evolved, (ii) the entropy
change of the copper, (iii) the entropy change in the surroundings.

[11.3.1,11.3.3]

11.4 Given the standard enthalpies of formation for

CuSO,(s) -771.4 kI mol”
CuSO,.5H,0(s) -2279.7 kJ ol
H,00) -285.8 kJ mol’’



11.5

11.6

calculate the entropy change in the environment when 3.82 mol of anhydrous CuSOy4
undergoes the reaction

CuSO,(s) + SH,0() - CuSO,.SH,O(s).
[11.3.3]

Given the standard entropies of

CuSO,(s) 109 JK™" mol ™"
CuS0,.5H,0(s) 300.4TK " mol’
H,0() 69.91 JK ' mol”

calculate the standard entropy change for the reaction in Problemn 11.4. Use your results
to determine whether this process will be spontaneous.
[11.3.3]

A 1 kg block of Cu (¢, = 24.44 J K-1 mol-1) at 200 °C and a 1 kg block of Pb (¢, =

26.44 J K-1 mol-1) at 0 oC are placed in thermal contact inside an insulated enclosure.
Assuming that the given heat capacities are constant, calculate the entropy change
experienced by each block and the entropy change for the isolated system.

[11.3.1]




Solutions

11.1 Assuming a temperature-independent heat capacity, the entropy change per mole is

AS

it

T?.
Cp In (T_l)

(7529 K mol™) x In (313

298

= 1690 TK ' mol™.

The entropy change for the cooling of 1 kg of water is therefore
(1000 g)
(18.02 g mol )

x (1690 JK ' mot™) = 937.8 1K

11.2 With the given empirical expression for ¢,, the molar entropy change for the graphite is

T,

_ ¢\ dT
AS —J.(a + o7 + £yl

Ti_ r

2
= (£ +b+ 4T
fiores

1

1 T2

—]1
o

InT}2 + b (T},
= + + [
alnTl; + b7l +
Putting T) =300 K and 77 = 400 K,
5
As = 168610 (A%0) + 4775 10° x (400 - 300) - $34X 10 (L

. | )
2 400°  300°
485 + 048 + 2.08

= 741 1K mol™.
The total entropy change is therefore

(5.64 mol) x (741 TK ' mol™) = 41.79JK™".
11.3 Assuming a constant heat capacity, the heat evolved is
q = ne,(T, - T))

_ a2y
(63.54 g mol ™)
= -480KJ

x (2444 JK mol) x (- 100K)




(ii) The entropy change of the copper block is

T2
ASyys = nc, In (T—)

1
(200 mol) x (24.44JK ' mol™) x In (%)

-141JK

i

(iii)  The absorption of heat - ¢ by the environment results in an entropy change of

AS.yy = T:q

env

(4.89 x 10° J)
(300 K)

1631K ™.

H

11.4 The standard enthalpy of reaction is

0

AH

AH®(CuSO,SH,0,5) - SAH'(H,0,1) - AH’(CuSO,,5)
-2279.7 + 5x 2858 + 771.4

-79.3 kI mol .

The heat generated by reaction of 3.82 mol is therefore
g, = (3.82mol) x (-79.3 kJ mol™)

= -302.9kJ.
Absorption of this quantity of heat by the environment at 298 K results in the entropy
change
-q
ASeny = Te:v
_ (3029 x 10° J)
(298 K)

1.016x 10° JK ™,
11.5 The standard reaction entropy change is

AS® = $°(CuS0O,.5H,0,s) - 55°(H,0,1) - $°(CuSO,, 5)
= 3004 - 5x69.91 - 109

= -1582JK " mol™.
The entropy change for the system is therefore
ASy, = (3.82mol) x (-1582JK mol’) = -604.1JK"’

so the total entropy change is

>




AS,,, _ 604.1
AS,,, 1016
AS . 212 KL

uni

From this result we conclude that the reaction has a tendency to proceed spontaneously
(whether it actually does occur depends in general on the kinetics, and cannot be
deduced from thermodynamics alone).

11.6 For copper,
(1000 g)

.= — = 15.74 mol.
(63.54 g mol )

For lead,
(1000 g)

(207.19 g mol )
We can work out the final temperature of the blocks from the condition that

= 4.826 mol.

Tpy,

heat lost by Cu = heat gained by Pb

or
ey - 4732) = npc, (T - 273.2)
Solving for T,
MpyCo.py
473.2 + ——x 273.2
T = Cucp,Cu
: "pyCppb ’
nCucp,Cu
and since
PpbCppp _ (4.826 mol) x (26.44 JK  mol’) _ 03317
"oupCu (15.74 mol) x (24.44 JK ' mol ™)
we have
T = 4732 + 10:33331177 x 273.2 = 4234 K.
The entropy change for the copper is
AS. =n.c . In(—=L—) = (1574 mol") x (24.44 T K 'mol™) x In (423:4)
cu = elpcu It (G735 473.2

= -42.79JK,
while the entropy change for the lead is

T 1l 423.4
In (273.2) (4.826 mol) X (26.44 JK "'mol ) xIn (273.2)

= 5590 K.
The entropy change for the isolated system is therefore

AS

P~ "pplppb

AS = AS. + AS, = -4279 + 5590
- 13.11JK L



Physical Chemistry Lecture 12: Summary

While the Second Law tells us that natural processes occur in the direction in which the
combined entropy of the system and environment increases, it does not specify whether the
entropy increase of the system is greater in magnitude than the entropy decrease of the
environment, or vice versa. In this lecture, we analyse a variety of processes, which we all
know from experience to be irreversible, with the aim of comparing the entropy changes
experienced by the system and the environment.

The first such process that we consider is the irreversible cooling of a substance. Since the
entropy of the substance (considered as the system) must decrease, the entropy increase of the
environment resulting from the absorption of the heat lost must be of greater magnitude. If the
temperature decreases from T}, to T, and the heat capacity is constant, the heat transferred is

q = -c,(T,-TJ) (0
and the entropy changes for the system and environment are
c,(T, -T.) T
pPhtc - h
T—c and ASgys =-cpIn (T—C). (2)

We can see that the entropy increase in the environment is always greater than the entropy
decrease in the system by observing that

ASemv =

) < 22 (3)

T T
nGEH =@+ 4
n (G = In
for all temperaturesTy, > T, (you can readily verify this inequality by use of a calculator).

The next process we consider is the isothermal expansion of an ideal gas from V; to V5. If this
process is carried out reversibly, then as we saw earlier by application of the First Law,

) q Vs
g = -w = nRTIn (‘—/-) so that ASS},S =T = nR In (V—). @)
1 1

The entropy change in the environment is

V2
= 1R In (%), ©)
1

from which it is clear that the entropy changes for the system and environment exactly cancel
each other out. When the process is carried out irreversibly, application of the First Law gives

ASenv = '%

v, . v,
g = -w = nRT (1 -V—) and again, ASyys =nRIn (_V ), ©)
2 1

since the entropy is a state function: as far as entropy of the system is concerned, it doesn’t
matter whether the volume changes reversibly or irreversibly. The combined entropy change is
therefore
1% 1%
AS=~nR(1-V—1)+ann(-—2—), %)

2 Vl

and by applying the same properties of the logarithm function as in the first example, we can
again show that this expression is always positive. In this case the entropy increase in the
system more than compensates for the entropy decrease in the environment.



We finally consider the entropy changes associated with changes of state. A phase change is in
general characterised by a transition temperature 7, and molar enthalpy change, and as we saw

in our first lecture on entropy, the entropy change for the substance (system) when the phase
transition occurs reversibly is obtained by dividing the enthalpy by the transition temperature.
Since exactly the same quantity of heat is absorbed from or by the environment at the same
temperature, it is easy to see that for a reversible phase transition the entropy change in the
universe (i.e., the system and environment) is zero:

AH,
- AS

ir

—-ﬂ AS .= AS...+AS,,, =0 (8
env — T uni sys env
tr
For an irreversible phase transition occurring at some other temperature 7, we must include in

our calculations the entropy change involved in heating or cooling the product to T from T5,.

For example, if a liquid is vaporized at a temperature higher than its boiling point, the heat
absorbed from and the entropy change experienced by the environment are

AS sys =

T
g = AH,, + jcp‘g & BSp = -L, ©)

T,

while the entropy change experienced by the fluid (considered as the system) is

5ys

T
AH c
AS = Svap | I g 4T (10)
T, T
Tb

If the temperature is not very much higher than the boiling point, the terms involving the
integrals will make a rather small contribution, and it is easy to see that the entropy increase for
the fluid is greater than the entropy decrease for the environment, since

1 L
AHvap(Tb i 0, (11)

whenever T > T}, Similar remarks apply to the freezing of a liquid at a temperature lower than

its freezing point, but in this case it can be shown that the entropy increase of the environment
is greater.

Learning Objectives
Comprehension

12.2.1 For irreversible processes, determine without calculation whether the entropy change of
the system or the environment is greater.

Application
Calculate the entropy changes of the system, the environment and the universe for
12.3.1 cooling of a hot body.

12.3.2 irreversible and reversible isothermal expansion of an ideal gas against constant
pressure.

12.3.3 irreversible and reversible vaporization of a liquid or condensation of a vapour.

12.3.4 irreversible or reversible solidification of a liquid or melting of a solid.




12.3.5 any constant-volume process characterized by a given internal energy and entropy

changes for the system.

12.3.6 any constant-pressure process characterized by a given enthalpy and entropy changes

for the system.

Problems

12.1

12.2

12.3

12.4

12.5

12.6

3.642 mol of a perfect gas confined to a volume of 10.00 L at 300 K expands
irreversibly against a pressure of 1 atm. Calculate the entropy changes for the system,
the environment and the universe.

[12.3.2]

A 1 kg block of ice is removed from a refrigerator and allowed to melt by placing it in
contact with surroundings at 300 K. Calculate the entropy changes for the system, the
environment and the universe. For ice, the enthalpy of fusion is 6.008 kJ mol-1, and for
water ¢, = 75.29 J K-1 mol-1.

[12.3.4]
58 g of liquid lead at its melting point (600.6 K) is poured into a mould at room
temperature. Calculate the entropy change of the lead, the environment and the
universe. The enthalpy of fusion of lead is 4.817 kJ mol-1, the heat capacityc, of solid

lead is 26.44 J K-1 mol-1 and the molar mass is 207.22 g mol-1.

[12.3.4]
1 m3 of perfect gas at 273.2 K and 10 atm expands irreversibly against a final pressure
of 1 atm. Calculate the entropy changes of the system, the environment and the

universe.

[12.3.2]
Consider a process with an entropy change AS and internal energy change AU occurring
at temperature T in a closed, constant-volume container. What relation must be satisfied
by AU and AS if the process is to proceed spontaneously? ”a

[12.3.5]
Consider a process with an entropy change aS and enthalpy change aH occurring at
temperature T at constant pressure. What relation must be satisfied by AS and AH if the

process is to proceed spontaneously?
[12.3.6]




Solutions
12.1 The final volume of the gas is

V. = nRT
2 p,

(3.642 mol) x (8.314 T K™ mol™") x (300 K)
(1.013 x 10° Pa)
= 8.967 x 107 m?.

The work done in this irreversible expansion is

w = p,(V, - V)
- (1013 x 10° Pa) x (8.967 x 107m® - 1.000 x 107 m?)
= - 8.070 kIJ.

Since the gas is perfect, the heat absorbed satisfies
AU = g+w =0

g = -w = +8.070kJ.
The entropy change of the surroundings is

Ag - 24 _ (:8070x10°]
env T (300 K}
= -2690JK™,
and the entropy change in the system can be obtained from
Va
ASgs = nR In (—V—)

1

2
(3.642 mol) x (8.314 1K' mol ") x In (3:267x 10,
1.000 x 10°

6642 TK ',

The entropy change for the universe is therefore

AS, . = AS.n + ASyy,

uni

-26.90 + 66.42
3952 1K .

12.2 The number of moles is

_ _ (1000 g)
(18.02 g mol ™)

= 55.49 mol.



The entropy change for the system is

T
AH C
fus P
"l +_[de]

AS,y, =
m
m 3 -1
_ (6.008 x 10" J mol ) -1 -1 300
= (55.49 mol) x [ RS + (7529 JK mol ) x In (z2255)]
=1611TJK.
The total heat absorbed from the environment is
q = nAHfm +n cp(T-Tm)
= (55.49 mol) x [(6.008 x 10° Jmol™) + (75.29 F K' mol™) x (26.8 K)]

I

4454 kJ,

so that the entropy change for the environment is

AS.,, = %
_ (-4454x10°7)

3 -l
=-14 100JK .
G000 1.485 x 107 J

Therefore, the entropy change for the universe is

AS . = AS + AS

uni env £yS§

= 1611- 1485
= 126 1KL.

12.3 The number of moles is
(58 g)

(207.2 g mol ™)

The heat given out in the solidification process is - AHg,; per mole, so that

= (0.2799 mol.

g = n[-AH, + c,(T,-T)]
= (0.2799 mol) x [(-4.817 kJ mol ') + (26.44 J K mol ) x (298.2 K - 600.6 K)]
= - 3.600 kI.

The entropy change for the environment resulting from the absorption of this quantity
of heat is

As . - -4 _ (3600x10°])
e~ =T, T T (2982K)

i

1207 1K,




while the entropy change for the lead is

- AH T
= n [— T4 2.
AS n T, + ¢, In (T1 )]
3 -1
(0.2799 mol) x [(' 4.817 x 10" Jmol )

(600.6 K)

Sy§

-1 -1 208.2
+ (2644 JK mol )xIn (—600.6)]

#

-7426 1K,

The entropy change for the universe is therefore

AS, . = ASgyy + ASen

uni

H

12.07 - 7.426

464K,
12.4 The number of moles is

_PY) _ (1013 x 10° Pa) x (1.000 m’)
RT (8314 7K mol") x (273.2)

and the final volume is (obviously!) V5 = 10 m3. For the gas,

= 446.0 mol,

V2 SR 10
ASgs = nR In (£2) = (446.0mol) x (8.314 JK mol ") xIn ()
1

= 8.538KI K,
and the heat absorbed in the irreversible expansion is

q=-w

= p,(V,- V) = (1.013 x 10° Pa) x (9 m®)

9.117 x 10° J,
so that the entropy change for the environment is

(-9.117 x 10° J)

ASenv = "f?" - T @732K)
= 3337 JK .
Therefore,
AS, . = ASy, + AS,,
= 8.538 - 3.337
= 5201 kIK .

12.5 The heat absorbed or evolved at constant volume is by definition equal to the internal

energy change alU. The entropy change for the environment resulting from this heat
transfer is

AS,,, = -AY

envy T’



12.6

while the entropy change of the system is simply

ASgys = AS.

The process will occur spontaneously in the direction for which

AS, . = AS,y, + AS,,,

AU
= - 22 s (0.
AS T
This condition can be written as

AA = AU - TAS <0,
where A is called the Helmholtz function.

The heat absorbed or evolved at constant pressure is by definition equal to the enthalpy
change aH. The entropy change for the environment resulting from this heat transfer is

ASenv = "A'TI:—Is

while the entropy change of the system is simply

AS,y, = AS.
The process will occur spontaneously in the direction for which
AS . = ASy, + AS,,
AH
=AS - ==—> 0
T

This condition can be written as

AG = AH - TAS < 0,
where G is called the Gibbs function.



Physical Chemistry Lecture 13: Summary

We observed earlier that the entropy changes corresponding to solid-liquid and liquid-gas
transitions are always positive, which suggests that entropy is in some sense a measure of the
disorder of molecular arrangements. Our quantitative treatment of entropy has, however, been
completely macroscopic, involving the determination of entropy changes by consideration of
the amounts of work and heat transferred. To establish a molecular interpretation of the
entropy, it is necessary to consider not only the spatial distribution of molecules, but also their
distribution of energy. This is the concemn of statistical mechanics.

All the irreversible processes considered have in common a tendency towards a state of
equilibrium, where no further change occurs. These irreversible changes involve redistribution
of molecules among their translational, rotational and vibrational energy levels. The equilibrium
state can be characterised not only in terms of an internal energy, but in terms of a quantity
known as the degeneracy, 2, which is the number of possible molecular configurations
corresponding to the given internal energy. According to statistical mechanics, the equilibrium
state corresponds to the most probable distribution consistent with the constraints imposed on
the system. The entropy is related to the degeneracy by Boltzmann's formula:

S=kinQ=+%» PP, )
i

where P; is the probability of state i, k is Boltzmann's constant (the gas constant R divided by

Avogadro’s Number), and summation (or integration) is over all energy levels accessible to the
system. When there is only one possible configuration, the entropy is zero.

Molecules are distributed among their energy levels by ceaseless vibrations and collisions. As a
result, the instantaneous configuration of the system can be expected to fluctuate, but since
macroscopic samples of matter contain huge numbers of molecules, fluctuations about the
equilibrium value of S and the other thermodynamic functions are extremely small. The most
important general conclusion from statistical mechanics is that the distribution of molecules
among their energy levels depends strongly on the relative values of individual molecular
energies and the quantity &7, which can be regarded as a measure of average thermal energy.
When the differences in the molecular energy levels are very small compared to &T (i.e., at
high temperatures), we can expect a very broad distribution of molecular energies, which is in
turn associated with a large entropy. At very low temperatures, where the energy level
differences are very large compared to kT, the populations of the higher molecular energy
states will be very small, and the entropy associated with this limiting arrangement is low.

The temperature-dependence of the entropy of a substance can be determined experimentally if
the heat-capacity is known as a function of temperature. The general result

T
S(T) - S(T) = jf”—l(?dr @)

Ty

gives values of entropy at one temperature relative to another: usually the reference temperature
is selected to be 0 K. If the interval of integration includes a phase change, the corresponding
entropy must also be included. For a gas at temperature 7, the relative value of the entropy is

ST - SQO) =
T Tb T
j%p,solid(T) IT + AH[us + Jcp,liquid(n dT + AHva‘p + J' cp,gas(T)
g T T, ; T T, T
m b
(solid) (melting) (liquid) (boiling) (gas)

3



Heat capacities of substances are known to approach zero as T tends to zero, and it was
observed experimentally by Nernst that the entropy change for any process also tends to zero in
this limit. This led him to state the Third Law of Thermodynamics:

"If the entropy of every element in its stable state at 0 K is assigned the value
zero, then every substance has a positive entropy which at 0 K may become
zero, and does become zero in the case of perfectly crystalline substances”.

The association of a perfect crystal with zero entropy can be readily understood from
Boltzmann’s formula. In a perfect crystal at 0 K, all molecules are in their lowest possible
energy states and in a perfectly regular spatial arrangement. There is only one possible
configuration for which this is true: © =1, so § = 0. The above statement of the Third Law
applies only to substances in equilibrium; a glass, for example, may not be in equilibrium
because its enormous viscosity causes extremely slow crystallization (which may take
centuries). As a result of the irreversibility of all natural processes, it can be shown that it is not
possible to reach absolute zero in a finite number of operations (temperatures much lower than
a millionth of a degree have, however, been achieved). The impossibility of reaching absolute
zero is often taken as a statement of the Third Law.

The Second Law can be used to construct an alternative criterion for spontaneity that
incorporates the entropy changes of both the system and the environment. If a process occurs

at constant temperature and pressure and involves enthalpy change AH and entropy change AS,
the Second Law requires that

AS-%>O, or AG = AH - TAS < 0, (4)

where the quantity G = H - TS is called the Gibbs Energy or Gibbs Function. The Gibbs
Energy therefore decreases in a spontaneous process. Likewise, application of the Second Law
to in constant-volume process at temperature T results in the condition

AS-%>O, or AA =AU - TAS < 0, (5)

where A = U - TS is known as the Helmbholtz Energy or Helmholtz Function. The Gibbs and
Helmholtz functions can be related to the maximum work that can be done by the system in a
given process. This can be demonstrated starting from a form of the Second Law known as the
Clausius Inequality:

AS > % or g < TAS. ©)

This result for g can be substituted into the First Law, leading to the inequality

AU <« TAS +w or -w < AU + TAS; (7)
recall that w is negative if work is done by the system. Taking absolute values of both sides,

wl < IAU - T ASI = IAA| (8)

w_

Since the sign implied here only applies to a reversible process, we can conclude that the
maximum possible work obtainable is equal to the change in the Helmholtz Function. At
constant pressure, the work done by the system in changing its volume is - p AV. Subtracting
this from w and AA in equation 8 leads to the result that

w - (-p AV)l < IAA + p AVI = IAGI, (9)

which states that the maximum non-pV work that can be obtained from the system is equal to
AG. An important example of non-pV work is the work associated with driving electrons
through the circuit in an electrochemical cell.



Learning Objectives
Knowledge
13.1.1 State the Third Law of Thermodynamics.

13.1.2 Define the configurational degeneracy of a system, and relate this to the entropy by use
of Boltzmann’s formula.

Comprehension

13.2.1 Describe qualitatively the equilibrium state of a system in terms of the probability of
various molecular configurations.

13.2.2 Explain how the entropy of a system depends on the molecular energies relative to 7.
13.2.3 Discuss the significance of the Third Law in terms of Boltzmann’s formula.

13.2.4 Describe the variation of heat capacities and entropy changes as temperature approaches
absolute zero.

13.2.5 Describe the calculation of Third-Law entropies from heat-capacity variation.
Application

Calculate

13.3.1 the change in Gibbs energy given enthalpy and entropy changes.

13.3.2 the change in Helmholtz energy given internal energy and entropy changes.
13.3.3 the change in entropy over a temperature range that includes a phase transition.
Analysis

13.4.1 Demonstrate the equivalence of the Second Law and the Clausius Inequality.

13.4.2 Demonstrate the equivalence of the Second Law and the conditions (AG)T p < 0 and
(AT Vv <0

13.4.3 Show how the identification of ladl as the maximum work obtainable follows from the
Clausius Inequality.

13.4.4 Demonstrate the identification of 1AG| as the maximum non-pV work obtainable.




Physical Chemistry Lecture 14: Summary

In the last lecture we saw how an irreversible process can be characterised not only in terms of
the overall entropy change, but also in terms of changes in the Helmholtz and Gibbs functions,
which are in turn related to the maximum work that can be performed by the system in such a
process. These new functions are also significant in that they provide a means of predicting the
equilibrium state of a system, which is eventually reached when the irreversible process ceases.
The Gibbs function proves to be particularly useful in this connexion since, as we saw earlier,
it arises naturally from consideration of processes at constant pressure. To predict the position
of equilibrium it is first necessary to determine how the Gibbs function depends on pressure
and temperature.

The starting point for determining the dependence of A and G on the appropriate independent
variables is the combination of the First and Second Laws of Thermodynamics. To do this,
suppose that a system changes its volume and temperature by some small but finite amount.
Then the change in U is given, for example, by

T+ 8T V8V
AU = g+w = va(T,V+8V)dT - J‘p(V,T)dV. (1)
T 14

In the limiting case where the change is carried out reversibly and 87 and &V tend to zero, the
temperature and pressure are constant and we can express the (infinitesimal) amount of heat
absorbed, dg, in terms of the corresponding entropy change, TdS. Thus, we can write

dU = dq + dw

It

TdS - pdV. (3

This important result is called the Combined First and Second Laws of Thermodynamics, and
is a differential equation expressing the dependence of U/ on S and V.

To proceed further it is necessary to consider the general relation between changes in products
like pV and TS and the separate changes in p and Vor T and S. If p and V are replaced by p +
5p and V + 8V where 5p and 8V are small but finite changes, the change in pV is

(p +3p)V +3V) -pV =pV +pdV +Vdp + bV - pV
=pdV + V3p + 8pdV. 4)

In the limit as sp and 8V tend to zero, the product 8psV becomes negligible in comparison with
the other terms, and we obtain the differential of pV, which is written

dipV) = pdV + Vdp. (5)

By use of exactly similar algebra we also obtain the result

d(TS) = TdS + SdT. 6)

The differential equations satisfied by each of the functions H, A and G now follow from the
definitions of these functions and appropriate combinations of equations 3, 5, and 6:

dH = dU + dpV) = TdS + Vdp N
dA = dU - d(TS) = -SdT - pdV 8)
dG = dH - d(TS) = Vdp - SdT. 9




Since G is a state function, its dependence on p and T can also be expressed in the general form
oG oG
dG = dp + dT = Vdp - SdT. 10

These two expressions for dG must be identical, which in turn requires that

v=@9 wa S=ED, an

The pressure-dependence of G for an ideal gas follows from application of equation 11 to the
equation of state: V = nRT/p. The quantity of particular importance here is the difference
between the Gibbs energy of a gas at some pressure p (expressed in bars) and at a standard

pressure pe (conventionally taken to be 1 bar or 100 kPa).

P
G(Tp) - G(Tp°) = J.I‘%dp = naRT In (%). (12)
p° P

Differentiation of this with respect to n gives the chemical potential, |\

0 oy _ QQ _ _aﬁ - P
WT.p) - p(Tp°) = (Bn )1 (an )T.p" RT In (p")‘ (13)

where the superscript ‘o’ is used to refer to the standard state where p = 1 bar. For a real gas,
the chemical potential is written in terms of the fugacity, f:

WT,p) - u(T,p°) = RTIn (;%) = RTIn (4%) (14)

where ¢ is the fugacity coefficient, which is always 1 for an ideal gas. This means that the
quantity RT In ¢ is the Gibbs energy difference between the real gas at pressure p and the ideal

gas at pressure po at temperature 7. For each component i in a mixture of gases, the fugacity
is defined in terms of the appropriate partial pressure:

W, = K + RTIn (¢i§0i) = 12 + RTIn (¢EM) (15)

pO
where y; is the mole fraction, and the fugacity coefficient ¢; is again 1 for each component of a
mixture of ideal gases.

The great importance of the chemical potential and fugacity is that they allow a general
expression to be determined for the equilibrium composition of a mixture undergoing a
chemical reaction. This expression is perfectly general and its derivation does not rely on
equating the rates of forward and reverse reactions, as is usually the case in elementary
treatments. According to the Second Law, the generalised chemical reaction

aA + bB - cC + dD (16)

will proceed in the direction in which the total Gibbs function of the system decreases until it
reaches equilibrium, at which the Gibbs function is a2 minimum. At this point, the Gibbs energy
of the reactants is equal to the Gibbs energy of the products:

a[uS +RT In (%o—)] + buS +RT In (gf‘g)] = c[% +RTn ({%)] +d[u + RT In (2)]
p p




which can be arranged in the more familiar form

AG® = -RTInkK a7n
where

1]

AG™ = cpd, +dug - ap; - bug and K =

are the standard Gibbs energy change and the equilibrium constant, respectively. Since the
fugacity of each component in general depends on the composition of the mixture,
determination of the equilibrium extent of reaction requires numerical solution of equation 17.
However, even without doing this it follows that if the standard Gibbs energy change is large
and negative, the value of the equilibrium constant will be large and the equilibrium
composition will correspond to almost complete conversion of products to reactants.
Learning Objectives

Knowledge

14.1.1 Define the chemical potential in terms of the Gibbs energy and fugacity.

14.1.2 State the condition for chemical reaction equilibrium in terms of the chemical potentials
of reactants and products.

Comprehension

14.2.1 Describe how the Combined First and Second Laws equation follows from the general
expression for the change in U resulting from finite changes in T and V.

14.2.2 Describe qualitatively the relation between the standard Gibbs energy change at a given
temperature, the equilibrium constant, and the extent of reaction.

Application
Calculate
14.3.1 the change in G for an ideal gas resulting from change in the pressure.

14.3.2 the change in G for an incompressible substance resulting from an isothermal change in
the pressure.

14.3.3 the contribution of nonideality to the chemical potential of a gas given the value of the
fugacity coefficient.

14.3.4 the chemical potential of a component in an ideal gas mixture given its partial pressure
or the mole fraction and total pressure.

14.3.5 the standard Gibbs energy change from the equilibrium constant and vice versa.
Analysis

14.4.1 Derive the differential forms for H, A and G from the Combined First and Second
Laws and the expressions for d(pV) and d(T'S).

14.4.2 Rearrange the condition of chemical equilibrium into the relation aGo = -RT In K.




Problems

14.1

14.2

14.3

14.4

For lead, the molar mass is 207.2 g mol-1 and the normal density is 11.03 g cm-1.
Calculate the change in the molar Gibbs energy of lead when the pressure increases by
500 atm, assuming it to be incompressible.

[14.3.2]
The fugacity coefficient of a certain gas at 300 K and 10 atm pressure is known to be
0.942. Calculate (i) the fugacity and (ii) the nonideal contribution to the chemical
potential of the gas under these conditions, assuming a reference pressure of 1 bar.

[14.3.3]
Calculate the change in the Gibbs energy of 3.265 mol of perfect gas when its pressure
increases from 1.013 bar to 5.846 bar at 300 K. 3

[14.3.1]
From the following thermochemical data at 298 K

3CE) + 3y o cyclo-CH(® AH°=53kImol” AG® =104 kI mol

3C() + 3Hyg) — CH,CH=CH,(g) AH®=20kImol” AG® =621 mol’

14.5

(i)
(i1)
14.6

estimate (i) AHe, (ii) AGvo, (iii) ASe, and (iv) the equilibrium constant for the
isomerization reaction

cyclo-C,H (g) —  CH,CH=CH,(g)

[14.3.5]
Measurements of the equilibrium constants of reactions are often used to determine

standard Gibbs energy changes. A relation between the uncertainties in AG© and the
equilibrium constant can be determined by differentiating both sides of the equation

_AG° _
RT - In K
with respect to K:
4 (AGY _ 1
dK ° RT K

AG®y _ 3K
IS(RT)I__ A

Calculate the uncertainty in AGe at 300 K corresponding to a relative error in X of 1%.

What is the maximum allowable error in X if aGe is required to + 1 J/mol?
[14.3.5]
From the following thermochemical data at 298 K for the cis and trans isomers of but-

2-ene (in kJ mol-1)
4C(gn + 4H,(g) — cis-2CHg  AH°=-699 AG®=6595

AC(gr) + 4H,(g) — trans-2-CHy(g) AH' =-11.17 AG’ =63.06

estimate (i) AHo, (ii) AGo, (iii) ASo, (iv) the equilibrium constant for the isomerization
reaction

cis -2-CHe(g) —  trans -2-C H(g)

and (v) the mole fraction of each isomer at equilibrium, assuming a total pressure of 1
bar and that the mixture can be treated as ideal.
[14.3.4,14.3.5]




Solutions

14.1 The molar volume is

1
y = (2072 gmol 1) = 1878 mLmol ' = 1.878 x 10”° m* mol .
(11.03 g mL™)

The change in Gibbs energy resulting from the increase in pressure is therefore
AG = vAp

(1.878 x 10" m? mol ™) x (500 x 1.013 x 10° Pa) = 951.2J.

14.2(i) Since the pressure is given in atm and the reference pressure is 1 bar, we need to
convert the pressure to bars:

p = (10 atm) x (1.013 bar atm™") = 10.13 bar.
The fugacity is therefore

f = 0942 x (10.13 bar) = 9.542 bar.
(i1)

The nonideal contribution to the chemical potential is

RTIn¢ = (8314 JK ' mol™) x (300 K) x In (0.942) = -149.0 J mol .

14.3 The increase in Gibbs energy is

AG

2
nRT In (Z—l)

it

(3.265 mol) x (8.314 JK 'mol ") x (300 K) x In (ffﬁ%
= 14.27kJ.

14.4(i) The required standard enthalpy change can be determined by addition of the reactions as
follows:

3C(gn) + 3H,(y) — CH,CH=CH,(g) AH® =20 kJ mol ™’
cyclo-C,H,(g) > 3C(n + 3Hy,(® AH’=-53kImol’

cyclo-CyH,(g) - CH,CH=CH(g)  AH’=-33kImol.
(ii)

By exactly similar manipulations we find for the corresponding standard Gibbs energy
change

AG® = 62-104 = - 42 kJ mol ™.
(iii)

The entropy change can be determined from the answers to parts (i) and (ii) by
rearranging the definition




4]

AG® = AH® - TAS®

into

= 30JK 'mol’.

AS® < AH® - AG® _ (-33 kJ mol ) - (-42 kJ mol")
T (298 K)

The fact that this entropy change is positive can be understood in terms of the structural
change occurring here: the propene molecule can assume more conformations (e.g., by
rotation about the CHj - C bond) than the cyclopropane molecule.

(iv)  The equilibrium constant is

4.2 x 10* T mol ™)
(8.314 J K mol™) x (298 K)

0 AG®
AG = -RThhK or K = exp(- _ﬁ_T_) = exp(-

=23x%x10".

14.5(i) From the given formula it follows that a relative error of 1% (i.e., 0.01) in K at 300 K
corresponds to an error in AG© of

SIAG®) ~ RT%& = (8314 TK ' mol") x (300 K) x (0.01)

= 25T mol™.
(ii) To estimate to within 1 J mol-1 we would need to know K with a maximum relative
error of
o -1
3K _ SIAG | _ (1 Jmol ) - 4x 107 = 0.04%.

K RT (8314 1 K 'mol ™) x (300 K)

14.6 Following exactly the same procedure as in Problem 14.4, we find:

® the standard enthalpy change:
AH® = -11.17 - (-6.99) = -4.18 kJ mol”'
(ii) the standard Gibbs energy change:

AG® = 63.06 - 6595 = -2.89 kJ mol "
(ili)  the standard entropy change:

o o -1 -1
AS® = AH ;;AG - (-4.18kJmol(2)9é (F—S.SQkJmol ) _ -4.33JK‘1mol'l

(iv)  and the equilibrium constant:

(-2.89 % 10° T mol ™)
(8.314 J K 'mol ™) x (298 K)
v) If x is the mole fraction of rrans-but-2-ene, then

) = 3.21

1]
K = exot 850, = expe

x_

14 X K 3.21
K = = = = (0.762.
o x K+1 321 +1 0.762
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SECTION A
QUESTION 1

a) Use the Frank and Wen model to distinguish between a structure making ion and

structure breaking ion.

4)

b) Compare the mechanism of migration of the cation and anion in a dilute HCI
solution during electrolysis.

&)

c) Given the following molar conductances at infinite dilution:
CsCl : 154,6 ohm™ cm?® mol™
CsOH : 271,0 ohm™ cm?mol™
If the molar conductance of the Cs ion at infinite dilution is 77,26 ohm™ cm? mol™
calculate the transport number at infinite dilution of the Cs” ion in CsCl and CsOH

solutions.

(3
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d) The resistance of a conductivity cell dipping into a solution of 0,1 M KCl was 78
ohm and when the same cell was placed in 0,1 M 2:2dimethylpropionic acid the

resistance measured 2510 ohms.

Calculate: i) The cell constant
i) The molar conductance of 0,1 M 2:2dimethylpropionic acid solution.

iii) The dissociation constant of 2:2 dimethylpropionic acid.

The conductivity of 0,1 M KCI = 0,01287 ohm™ ¢m'. The molar conductance at

infinite dilution of 2:2 dimethylpropionic acid is 417 ohm™ em? mol”

(11)
[25]
QUESTION 2
a) Briefly describe 3 electrodes that can be used to measure the pH of a solution.
(5)
b) For the following electrochemical cell:
- +
Zn| ZnSO4(aq) | Hg,SO4(s), Hg
Deduce:
i) The spontaneous cell reaction
i1) An expression for the cell emf in terms of the standard electrode

potentials and the concentration of the ZnSO, solution.
iii)  The concentration of ZnSO; required in the cell to give an overall cell e.m.f.

of 1,5000 volts at 25°C.
E°za2+ = -0,7628 V. E°Hghgsoysos =+ 0,6151V

R the gas constant = 8,314 J X' mol"
F the faraday = 96500 C mol’*
(8)
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c) Measurements on an electrochemical cell in which the following 2 electron transfer
reaction takes place:
Pb(s) + HgaSO04(s) = 2Hg(/) + PbSO4(s)
gave the following results:
The standard cell em.f at 25°C =0,9710 V.
The temperature coefficient of the standard cell em.f. =-3,8 x 10* VK"
1) Use the standard notation, to represent this cell.
it) Calculate the standard free energy change AGS, the standard enthalpy
change AH® and the standard entropy change AS°® for the cell reaction at
25°C.
iii) Calculate the equilibrium constant for the cell reaction at 25°C.
F, the faraday = 96500 C mol”,
(12)
(23]
. QUESTION 3
a) IL of perfect monatomic gas is initially at 273,2 K and 10 atm. If this gas is
allowed to expand isothermally and reversibly to a final pressure of 1 atm, calculate
the work done, heat transferred and the change in internal energy.
R, the gas constant = 8,31442 J K mol".
1 atm = 1,01325 x 10’ Pa.
3
b} The gas of question a) expands adiabatically and reversibly from an initial pressure
of 10 atm and temperature of 273,2 K. Determine the final temperature and
o 3 .
volume of the gas. (The molar heat capacity is C, = > R; you will need to work
out the ratio y = C/Cy.)
(5)
c) The enthalpy of combustion of ethane at 298 K is -1510,6 J mol’. Calculate the

temperature rise in 1 kg of water that would result from combustion of 0,1816 mol
ethane. Assume that the heat capacity of water is 4,184 JK™ g
4)
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d) The enthalpy of vaporization of cyclohexane at its normal boiling point of 80,7°C is
33,0k J mol. Assuming that the heat capacities of the liquid and vapour are 156 J
K mol" and 106 J K mol respectively, estimate the enthalpy of vaporization of
cyclohexane at 25°C.
)
e) Determine the standard enthalpy of the reaction:
CuS04(s) + SH,O(l) — CuSO0,.5H;0(s)
From the following standard enthalpies of formation:
CuSO4(s) AH®: = -771,4 kJ mol™
H,0(1) -285,8 kJ mol!
CuS0,4.5H,0(s) -2279,7 kJ mol™
4)
(23]
QUESTION 4
a) The enthalpy of vaporisation of n-heptane is 37,0 kJ mol™ at its normal boiling
point of 98,4°C. Calculate the entropy change experienced by 1 mol of heptane
when it vaporizes reversibly at this temperature.
(3)
b) 3,567 mol of perfect gas at 300 K expands reversibly and isothermally until its
volume has trebled. Calculate the entropy change experienced by the gas. Would
your result be different at another temperature? Explain.
(6)
c) The molar heat capacity C, of As is 24,64 J K™ mol™ at 298 K. Assuming this heat

capacity to be temperature - independent, determine the entropy change
experienced by 100 g As when its temperature is increased from 298 K to 348 K.
(The molar mass of Asis 74,92 g mol ™)

O
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d)

A 100 g block of ice initially at 0°C is allowed to melt by putting it in contact with
its surroundings at 25°C. Given that the enthalpy of fusion of ice is 6,008 kJ mot™
and the molar heat capacity of water is 75,38 J K" mol”, calculate the entropy
changes experienced by the ice (the system), the environment and the universe.
(Molar mass of water is 18.02 g mol™".)
(12)
[25]

SECTION B

QUESTION §

a)

b)

Consider a reaction
A+B->C

which is first order with respect to both A and B. Integrate the rate equation for
this reaction and derive an expression for the rate constant of the reaction in terms
of the initial concentrations of the reactants. The initial concentrations of the
reactants may not be assumed to be equal.

(12)

A solution of A is mixed with an equal volume of a solution of B containing the

same number of moles, and the following reaction occurs
A+B->C

At the end of 1 hour A is 75 percent reacted. How much of A will be left
unreacted at the end of 2 hours if the reaction is first order with respect to both A
and B.

(3)
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c) Give an account of the half-life method for the determination of the order of a
reaction.
(5)
[25]
QUESTION 6.
a) Explain what is meant by the terms:-
i) Moleculartiy of a chemical reaction. _
i) Rate constant of a chemical reaction. What would be the appropriate units
in which to express the rate constant of a second-order reaction?
ii1) Pseudo first order reaction.
()
b) The reaction:
A + BB + yC — Products
has a rate equation:
Rate = k[A]"'[B][C]™
Explain how you would determine the overali order of this reaction using the
graphical method
(6)
c) The decomposition of compound A is a first order reaction with an activation
energy of 52,3 kJ mol™. At 283 K the rate constant is 2,0 x 10™ §™'. Calculate the
percentage decomposition of A that would be observed after 20 minutes at 293 K.
(6)
d) Show that ty;, o n for a reaction that is n” order in A.
(al”
(6)
[25]
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27 September 1995

Dear Simon

re: Impressions of Chem 2 lecture (Chemical Thermodynamics), 1.15, 21 September 1995

You asked me to sit in on the fourth of a series of lectures on Chemical Theimodynamics
at second-year level, to give you my impressions on the following;

- were the main points coming across?
- was there a logical structure to the lecture and was this apparent?

- were you "doing anything to inhibit the transmission of what [you were] trying to
convey?"

At the outset I would like to reiterate what we discussed beforehand, that is that it’s very
difficult to evaluate somebody’s teaching on the basis of one site-visit, and that to get a more
holistic picture it would be necessary to run at least a student evaluation as well. We can
perhaps do that following this initial meeting. Nevertheless, there is a fair amount that can
be gauged about clarity, atmosphere in the class, student participation and so on.

The 45 - 50 students present at the lecture settled very quickly, and appeared to know what
to expect. I noted that the seating patterns were similar to that in most courses, i.e. even
spread, predominantly black students in the front, white students at the back (except that in
this class about 65% of the students were African). As they were settling I asked those
around me (in the back two rows) how they found the course - the responses were "it’s fine",
and "enjoyable”.

In your introduction you said you were “continuing a conversation" and would be explaining
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adiabatic processes, and summarised the main conclusions of the last lectures i.e. the
formulae arrived at. This seemed to be appreciated by the students, they knew where they
were and what was coming - I noticed them going over the handouts which you had
distributed as they came in. Given the word "conversation”, however, I expected that there
would be more two-way conversation - but more of that later.

The students were attentive all the way through and content to take notes. I saw that those
around me were able to take clear notes, and had the time to write formulae and other
important items in a different coloured pen, as you did when noting what the assumptions
were in different processes on the chalkboard. Your pace was suited to the students’ thus,
and it was helpful that you wrote down everything you expected them to get down on the
board. Your writing on the board was perhaps a bit small and faint, but the yellow chalk was
nevertheless legible from the back. I thought you spoke clearly and audibly, and changed
tone when you explained something. I thought more explanations might have been necessary
- it was difficult for me to tell how much the students were understanding and how familiar
they were with the concepts involved - I noticed one girl looking slightly puzzled at one
point, but then was satisfied after a brief question to her neighbour. The questions from
students at the end indicated that they at least had been following all the steps. In answer to
the first question then, "were the main points coming across”, 1 can say that, as a non-
chemist, it was abundantly clear what the main points were; whether students had internalised
them I can’t really say. I would like to be able to ask them that.

The structure of your lecture was very clear, first laying out the theoretical principles in the
first half of the lecture - the “"serious” bit, whereafter you explained to students what you
expected them to know and to be able to do. At this point there was a slight buzz in the
room, a visible relaxation after "getting the important bits down". You then went through
the examples, wrote up the whole problem and gave the solutions. Five minutes before the
end you summarised the main points of this lecture, and provided the students with a verbal
“"checklist” of the learning objectives of this lecture, and said what they didn’t need to know,
. which is also important in building confidence. Similarly, I thought your handouts were very
clear and well put together, detailed and thorough, and I think it’s good that you give
students an idea of why certain things are important and how they relate to real issues. The
learning objectives too, are well defined and the rationale behind the choice of problems is
explicit. The answer to your second question, about the logical structure being apparent, is
thus an affirmative.

I did wonder though if it wouldn’t be possible to involve students more in the examples part
of the lecture - would they not be able to identify the assumptions for instance? I don’t think
the class is too big for active participation, and the atmosphere was quite comfortable - I
think the students might respond well to that sort of stimulus. After all, they have got the
main things down, and they are provided with a handout that summarises the material, the
problems and the expectations neatly. So they have security and back-up with respect to the
material - the absence of which usually undermines the success of more informal,
participatory lectures.

This leads me to your third question; "were you doing anything to hinder transmission?".
The answer to this is no. The operative word here, however, is ‘transmission’. As I said to
you afterwards, I thought the lecture was very clear, the material and explanations very solid,
but perhaps a bit dry. (I did think though, that this may have been related to my presence




in the class). This could be alleviated through encouraging greater student participation -
students constructing their knowledge (you mentioned to me that you thought favourably of
"constructivism” as it applies to teaching), rather than simply receiving a transmission. On
the other hand, the students are provided with problems through which they can apply their
theoretical understanding, and I understand that the practicals are designed to compiement
the lectures and give students a chance to do some of that "constructing” of knowledge.

All in all then, in the three areas you asked me to look at, my impressions of the lecture are
positive ones. In order to answer the first question more fully though, and to ascertain the
students’ perspectives on their learning experience, I recommend that we run a student
evaluation along the lines of those used in other courses towards the end of the section.

Yours sincerely

Se

Denyse Webbstock
Evaluator
CUED




CHEMISTRY 224, 1995

COURSE EVALUATION QUESTIONNAIRE REPORT

November 1995

A course evaluation questionnaire drawn up by the CUED evaluator, and adapted for use
in Chem 224 by the course lecturer was administered to the Chem 224 cohort during a
lecture period in the last week of lectures of the second semester of 1995. A total of 46
students completed the questionnaire out of a possible .. registered for the course. Few
of the respondents provided further comment to the 25 questions in the computerised
section of the questionnaire.

In the questionnaire, students were presented with positively phrased statements (with
one or two exceptions), to which they could respond on a five-point scale; they could
either A. strongly disagree, B. disagree, C. be neutral, D. agree, or E. strongly agree. For
the purposes of analysis, and to gauge a mean response, each category was awarded a
numerical value, i.e. 1 for strongly disagree, 5 for strongly agree. Categories A & B were
considered to be negative responses, D & E positive ones.

All student comments included in the report are quoted verbatim.
General

58% of the respondents reacted positively to the question on whether Chemistry 224 had
met their expectations; 4% disagreed, mean 3.8. A little more than half (54%) had
understood from the course outlines what was expected of them; 17% had not. 84%
thought that this course was well-organised; 9% disagreed.

63% found that it had been made ciear how different concepts developed fitted together,
while 20% disagreed, mean 3.7. 52% found they could use things they learnt in Chem
224 in their other courses; 22% found otherwise.

48% of the respondents was enthusiastic about studying Thermodynamics, 20% was not.
60% found that they had been given sufficient guidance to help them cope with their
studies; 22% disagreed. 44% found that this course encouraged them to work
independently; 24% disagreed. 57% had learnt to think in new ways as a result of
studying Thermodynamics; 13% had not. 72% felt that they had developed intellectually
beyond the point they were at when they started the course; 13% disagreed. 35% found
the workload for this course to be greater than for their other courses; for 46% this was
not the case.

Two-thirds of the respondents would recommend this course to other students; 15%
would not, mean 3.8.

The only comment received on the General section was “tutorial work should be
considered more seriously by students”. Why there were not more comments is not clear;
perhaps students did not have sufficient time to comment.




From the above data it is clear that the majority of students considered this to be a waell
organised course, which helped them to develop in the field. Itis also clear, however, that
levels of enthusiasm for the subject are relatively low. This does not appear to he related
to an excessive workload, which is sometimes a reason for reducing enthusiasm.

Lectures. Prof. Marshall's

78% of the respondents found Prof. Marshall’s lectures to be clear and well delivered;
56% agreeing strongly that this was so. 13% disagreed. The mean response to this
question was 4.1. 78% found that the level at which these lectures were pitched was just
right for them; 16% disagreed, mean 3.9. 74% said they could always understand the
language used in these lectures; 16% said they could not. There were fairly similar
responses to the guestion concerning clear explanation of concepts, i.e. 67% positive;
16% negative. On the question whether students could take adequate notes in these
lectures the response was 84% positive, 9% negative.

36% understood how to discriminate between important and less important information
in these lectures; 9% felt they could not, and 56% was neutral. 58% thought they would
be able to transfer concepts they had learnt in these lectures to other topics; 16%
disagreed.

64% of the respondents found these lectures challenging; 20% did not. 80% considered
this section to be carefully prepared; 11% thought otherwise. 71% thought that good use
had bsen made of course materials such as handouts; 11% disagreed. 63% of the
respondents considered Prof. Marshall to have a good relationship with the class; 13%
thought otherwise, mean 3.8. 58% found that Prof. Marshall inspires enthusiasm for
studying Thermodynamics; 16% disagreed, mean 3.6. 75% were confident that Prof.
Marshall would have been willing to help them solve difficulties had they gone to see him;
12% were not.

From the above responses the impression emerges of a lecturer considered to be thorough
and competent by most of his students, who explains well and is generally willing to help
students with difficulties. Lectures appear to be pitched at a level these students find
appropriate. There is perhaps room for improvement in finding ways of "cuing” students
on the levels of importance of different bits of information, and in finding ways of inspiring
their enthusiasm for the subject to a greater extent.

The few commaeants received bear this impression out; they are here quoted in full.

"Excellent teacher. | propose that ali lecturers give us time for comments. | feel it's really

helpful to comment this way", "the teaching style he uses is excellent and well organised.
The pace is normal and acceptable. He make the course easier by explaining concepts
explicitty”, "! did go to see him and he was willing", "thank God it's over!! {Hopefuly..)",
"on a few occasions the discernment between important points and the lesser important

” L

material was difficult”, "very weli lectured”, and "good lecturer. Keep it up”.

Denyse Webbstock
CUED




Chemistry 224 - Thermodynamics
Course Evaluation Questionnaire

In this questionnaire you will be asked your opinion on various aspects of the
Thermodynamics component of Second Year Physical Chemistry, for the the purposes of
evaluation. In each question you are presented with a statement to which you should respond
on the computerised answer sheet. Your possible answers are:

A Strongly disagree
B Disagree

C Neutral response
D gree

E Strongly Agree

Fill in your answer on the right hand side of the answer sheet under answers 1- 25. Please use
an HB pencil only. Please note that the questionnaire is anonymous. You do not need to
complete the sections on the answer sheet concerning student number, name, sex, grade, date
or special codes. In the block marked ‘additional data’ write Chemical Thermodynamics under
‘course’ and your matric. educational authority, e.g. HoD, DET, NED etc. under ‘name’. You
are requested to complete the questionnaire in this period, and hand it in at the end. Any
additional comments you have may be written in the spaces provided on the question sheet.
Thank you for your cooperation.

The purpose of this evaluation is to help Prof. Marshall to see what needs to be changed and
what doesn't. Please be constructive! If you feel something does not work as well as it could,
pleased suggest how it could be improved.

General

1. I feel that the Thermodynamics part of Chemistry 224 has met my expectations of it.

2. I understand from the course outlines what was expected of me in this part of the
course.

3. I thought this course was well organised.

4. It was made clear to me how the various concepts developed fitted together.

5. I found that I could use things that I learned in this course in my other courses.

6. I feel enthusiastic about studying Thermodynamics,

7. I feel in general that I have been given sufficient guidance in order to help me cope with
my studies in Chemistry.

8. This course encouraged me to work independently.

9. As a result of studying Chemistry [ have learnt to think in new ways.

10. At the end of this course, I feel that I have developed intellectually beyond the point I
was at when I started the course.

11. I found the workload for this course greater than for my other courses.

12. 1 would recommend this course to other students.



Honours Physical Chemistry: Statistical Thermodynamics

Scope and Significance

Undergraduate Physical Chemistry courses can be regarded as consisting of two.main themes.
On the one hand, increasingly sophisticated models for the properties of individual molecules
are developed - for example, with the inroduction to spectroscopy and quantum mechanics,
and the use of molecular orbital concepts to explain reaction mechanisms and trends in the
stability of compounds. On the other hand, the principles of thermodynamics are developed
from a largely macroscopic perspective that emphasises the relation of the thermodynamic
functions to measurable energy changes and physical properties of pure substances and
mixtures. Only in the case of the entropy function is an attempt made to provide an
interpretation in terms of the molecular configurations accessible to a substance.

The significance of Statistical Thermodynamics is that it allows a connexion to be established
between these two divergent views of matter. In particular, it demonstrates that the intuitively-
appealing qualitative view of entropy as a measure of configurational disorder in an assembly
of molecules can be made rigorous and quantitative. '

Background of Students

The students in this course are assumed to have completed the requirements for a BSc degree
with specialisation in chemistry, for which a prerequisite is at least’one First-Year course in
mathematics. As a result of the Second-Year course, they should be familiar with the three
Laws of Thermodynamics, and from the Third-Year course, they should be familiar with basic
concepts of spectroscopy as applied to diatomic molecules, and elementary concepts of
quantum mechanics. In the Honours Core course in Physical Chemistry, which is taught in the
first half of the year, their knowledge of spectroscopy is extended by introduction to the group-
theoretical analysis of molecular symmetry and vibrations. The thermodynamic characterisation
of nonideal systems is also considered, with particular reference to the Principle of
Corresponding States and its use in the calculation of virial coefficients and fugacity
coefficients in gases and gas mixtures.

General Characteristics of Teaching Strategy. .

From an early stage in our education as chemists, molecular models have been invoked to
explain the behaviour of matter. While on the one hand it is intuitively attractive to be able to
predict the thermodynamic functions and the properties of substances -from molecular
considerations, on the other hand the mathematical apparatus required for this purpose makes
Statistical Thermodynamics virtually inaccessible to most students. It is particularly important
for the students to be able to separate the physical implications of the various models from the
analytical manipulations involved in the construction of these models. Published expositions of
Statistical Thermodynamics do not succeed in making this separation. Those intended for use
by physical chemists generally include Statistical Thermodynamics as a (usually small) part of a
course in General Physical Chemistry covering an extremely wide range of topics, and as a
result, insufficient attention is paid to fundamental concepts. Treatments intended for physics
students are more rigorous and focussed, but generally assume a quite strong mathematical
- background on the part of the students. Consequently, neither type of treatment can be
expected to be suitable for mathematically weak students. o

The teaching strategy that T have developed with these limitations in mind is based upon the
identification of the distribution function (i.e., the probability density function) as the unifying
central concept in the development of a statistical treatment of molecules. At the same time as
the fundamental physical concepts are introduced, students work through examples that
illustrate the important properties of various types of distribution functions, viz.,
normalisation, computation of expectation values and cumulative probability distributions. The
examples selected for this purpose include the functions that arise later in the exposition of the




statistical-mechanical theories. The idea of this is that in these lqter stages of the course,
emphasis can be devoted to the physical implications of the models, since the formal operations
involved have already been carried out as a purely mathematical exercise.

The logical-expository approach adopted by Physical Chemistry textbooks and monographs on
Statistical Thermodynamics is not only highly dependent on analytical manipulations, but also
on the particular argument used to develop the subject. This is evidently a rather inefficient way
of learning, because a reasonably profound grasp of the subject would have to be synthesised
by reading many different expositions. A more promising approach would encourage students
to construct their knowledge by comparing their views of what would constitute physically
reasonable behaviour with what is predicted by the various models and, of course, with what is

observed experimentally. Although this constructivist approach is widely used in the
development of elementary-level science curricula (such as the Science Foundation Program in
this University), it seems particularly appropriate for a course in Statistical Thermodynamics,
in view of its inherent compatibility with the hypothetico-deductive character of the subject.
The constructivist approach is implemented in practice by commencing a lecture with questions
designed to focus attention on the essential physics and to identify the parameters required to
specify the state of the system under consideration, proceeding to the analysis, and finally
returning to the comparison of the basic physical behaviour with the predictions of the models.

A further important element of the teaching strategy is the analysis of the subject matter into
specific learning objectives corresponding to a range of cognitive skills. I feel that such an
analysis is particularly important for Statistical Thermodynamics, since it is often unclear to
students (as it was to me as an undergraduate) whether they should be able to derive the
formulae, apply them to generate new theoretical results, or merely use them to provide
numerical estimates of various physical quantities. Excessive concentration on the formal
analytical aspects can (and often does) lead to deficiencies in understanding that become
apparent when students are forced to confront various types of problems. It is much better to
encourage students to be able to identify relevant assumptions and approximations, and to
describe the physical arguments behind the various results, than to expect them to reproduce
derivations from memory.

Synopsis of Content and Teaching Strategies
Lecture No. 1

In the first part of this lecture, an intuitive justification for a statistical description of matter is
presented. The idea of characterising a system in terms of microstates is used to introduce the
postulate of equal a priori probabilities, and the concept of an ensemble of systems large
enough to represent all possible configurations is used to introduce the ergodic hypothesis.
Attention is then turned to the basic statistical concepts that find application in Statistical
Thermodynamics, in particular the probability density function, normalisation, expectation
values and statistical independence. Finally, the exponential form of the Boltzmann distribution
is derived by application of the concept of statistical independence to the energy in a system of
weakly-interacting particles, and the significance of the partition function as the normalising
constant for this distribution is demonstrated. This simple, intuitively-appealing derivation is
based closely on the exposition presented by Jackson (1968).

Lecture No., 2

Here, the more usual derivation of the Boltzmann distribution from the combinatorial problem
of distributing members of a canonical ensemble among accessible energy states is presented.
The basic goal here is to demonstrate that the Boltzmann distribution is the most probable
distribution that is consistent with the constraints that the total energy and number of members
of the ensemble are constant. This is the development generally presented in Physical
Chemistry texts and monographs on Statistical Thermodynamics (e.g., Reif, 1966; Moore,
1972, Atkins, 1990). The different approaches presented in this and the previous lecture are
used to demonstrate different aspects of the physical significance of the various quantities.




Lecture No. 3

In this lecture, the connexion between the thermodynamic functions and the partition function
is developed. The first important points here are that the internal energy can be identified with
the expectation value of the Boltzmann distribution for the energy, and that this is the same
result as that obtained by logarithmic differentiation of Z with respect to p. With this
established, the log of the partition function for the system is assumed to be a function of T and
V, and the differential of In Z is compared with the differential form of the Combined First and
Second Laws. This leads to the result that g is inversely proportional to T, and the identification
of pressure and entropy in terms of Z. Finally, the concept of the statistical uncertainty is
introduced, and used to establish an alternative formula for the entropy in terms of the
probabilities of accessible configurations of the system. The development here again is based
on that presented by Jackson (1968).

Lecture No. 4

This lecture is designed to reinforce and make definite the concepts presented so far. It takes
the form of a class exercise, in which the partition function and the thermodynamic functions
are worked out for an hypothetical system of particles that can assume five equally-spaced
energy levels that are integer multiples of a dimensionless energy parameter pe. The exercise is
introduced with the focus question, ‘How do you think the distribution of particles among
these accessible states will be affected by the value of pe?’ It is designed to lead the students to
the conclusion that the preference of the particles for one energy level over another is crucially
dependent on this quantity (which measures the separation between adjacent energy levels),
that the entropy obtained in the manner described can be intuitively related to the degree of
information we have about the state of the system, and that the size of the partition function is a
measure of the accessible volume of phase space. The establishment of an intuitive, as distinct
from a purely formal appreciation of these facts can be identified as the central goal of the
course, and is a theme recurring through the subsequent analyses of particular molecular
systems.

Lecture No. 5

In this lecture, the apparatus of statistical mechanics developed in the previous classes is
applied to the simplest possible physical system: the classical monatomic perfect gas in the
absence of external fields. Attention is focussed on the essential physical characteristics of this
system by posing the questions, ‘Do you think that a given atom of the gas is more likely to be
found in one part of the container than another?’, ‘Do you think that a given atom is more likely
to be travelling in one direction than another?’, and ‘How can we describe a given microstate of
the gas and determine its energy?’. The answer to this last question is dependent on the
answers to the first two, and leads naturally to to the expression of the partition function in
terms of the velocity components of the N atoms. At this point the concept that the partition
function needs to be made dimensionless by division by a scale factor is introduced, with the
observation that its actual value is immaterial since it contributes at most an arbitrary additive
constant to the thermodynamic properties (which are all expressed in terms of In Z). The
partition function for the gas is expressed in terms of the atomic partition function by making
the further observations that the integrations over the velocity coordinates are equivalent, and
that in view of the indistinguishability of the atoms, the partition function needs to be divided
by N! (The argument followed by Reif (1966) initially assumes that the particles are
distinguishable, and uses the Gibbs paradox to justify, in an ad hoc manner, the incorporation
of this factorial, while Jackson (1968) shows that it results from considering the general
treatment of degenerate quantum gases. These two approaches are felt to be rather circuitous
for an introductory course.) Finally, application of the results derived earlier leads to the
deduction of the perfect gas equation of state, the identification of Boltzmann’s constant in
terms of the gas constant, and the expression for the molar internal energy as 3R7/2.




Lecture No. 6

The purpose of this lecture is to deduce the Maxwell-Boltzmann distribution of molecular
speeds and important quantities derived therefrom, such as the most probable speed, mean
speed, and root-mean-square speed. The crucial step in the derivation of this distribution from
the results developed in the last lecture is the transformation of the velocity phase-space volume
element into spherical polar coordinates. This is introduced by use of a geometrical
construction to relate the speed to the velocity components, and the independence of the
velocity components introduced in the previous lecture is used to justify the equivalence of all
directions and the combination of all velocity-space volume elements into a spherical shell of

volume 4nv2dy. The formal relation between the volume elements in cartesian and polar
coordinates is also stated (without the rather tedious proof) since it is also of importance in the
later consideration of the statistical treatment of electric polarization, but for present purposes
emphasis is placed on the intuitive argument. Finally, the distribution function is used to
calculate the particular speeds mentioned above. (A supplementary handout provided with this
lecture shows how the Gaussian integrals that arise in the analysis can be evaluated by fairly
simple manipulations.)

Lecture No. 7

The properties of the Maxwell-Boltzmann speed distribution are expanded upon here, and the
distribution of energies is derived. Particular emphasis is placed on the problem of estimating
various cumulative probabilities, viz., the probable fraction of molecules with a given
component of velocity greater than some value, and the corresponding probabilities for the
speed and energy. Tables of the higher transcendental functions (the error function and the
gamma distribution) that are required for this purpose are provided. The discussion is
commenced by drawing attention to the incorrect identification {commonly found in elementary
general chemistry textbooks - see, €.g., Pilar, 1979; Brady and Humiston, 1982) of the
ordinate in the Maxwell-Boltzmann distribution as the probable fraction of molecules with
speed v: this confuses the fundamental concepts of a cumulative probability and a probability
density. Attention is first devoted to the cumulative distribution of the individual velocity
components, which is expressed in terms of the error function. Integration by parts is used to
obtain the corresponding cumulative probability for the speed, and finally this 1s transformed to
the distribution of molecular energies (expressible in terms of the gamma distribution). The
change in the shape of these distribution functions with increasing temperature is used to
reinforce the conclusions from Lecture No. 4, regarding the effect of temperature on the
entropy. Finally, the distribution functions are used to determine the flux of molecules across a
plane, and to derive the ideal gas equation of state.

Lecture No. 8

The Statistical Thermodynamics of molecules possessing rotational and vibrational degrees of
freedom is introduced by posing the question, ‘In our analysis of the distribution of molecular
speeds and associated kinetic energy of a monatomic gas, what we found was that the average
kinetic energy per mole was 3R/2, irrespective of the mass of the molecule. Do you think that
the average energy resulting from rotational and vibrational motion is also independent of
molecular characteristics (such as moments of inertia and bond force constants)?’ Attention is
then turned to the construction of a classical expression for the total energy of a diatomic
molecule in which the harmonic approximation is used, leading to the result that this energy
depends quadratically on seven coordinates. With this in hand, the partition function is
evaluated by straightforward application of the Gaussian integrals used in Lectures 6 and 7,
leading to the result that the molar internal energy is R7/2 for each component of the molecular
energy that depends quadratically on some coordinate. Finally, this is summarised by a formal
statement and proof of the Equipartition Principle, and the continuous dependence of energy on
coordinates is identified as the essential underlying assumption.




Lecture No. 9

Essential physical differences between classical and quantum treatments of molecular motion
are noted, in particular the Heisenberg Uncertainty Principle and the origin of discrete energy
levels from the boundary conditions imposed on the wave functions. The focus question here
is, ‘How can the Uncertainty Principle be expected to be relevant in the specification of
microstates and the evaluation of partition functions?” The expression for the allowed energy
levels for a particle in a box is then stated and the partition function evaluated. Reference to the
Uncertainty Principle then allows the nondimensionalizing factor in the classical partition
function to be identified as the smallest possible element of position-momentumn phase space in
which a molecule can be said to be located. The internal energy is worked out and compared
with the classical treatment. The same procedure is then applied to the rigid diatomic rotator and
simple harmonic oscillator. The assumption implicit in approximating the sums in the
translational and rotational partition functions by integrals is identified, and the connexion
between this assumption and the applicability of classical models is noted.

Lecture No. 10

The purpose of this lecture is to develop the idea of the physical significance of the partition
function as a quantitative measure of the volume of phase space effectively accessible to a
particle. The focus question is, ‘How do you think that the separation between energy levels
affects the value of a partition function?’, and is directly connected with the exercise done in
Lecture 4. Attention is first focussed on the translational partition function for a particle in a
box, as expressed in terms of the volume divided by the cube of the thermal wavelength, A
rough calculation of a typical thermal wavelength is made and used to rationalise the huge
values typically obtained for this partition function. The effect of the dimensions of the
container on the separation of the energy levels is determined by estimating the separation
between the quantum states and comparing this with kT for a cavity of dimension 1 nm, and
repeating this comparison for a container of dimension 0.1 m. This exercise is designed to lead
to the conclusion that increasing the size of the container reduces the energy level separation
compared with kT, thereby increasing the number of quantum states (i.e., the volume of
momentum phase space) accessible to a particle. Next, the evaluation of the rotational partition
function is considered by introducing the concept of the rotational temperature, and the errors
involved in the replacement of the summation by an integral are estimated by use of the Euler-
Maclaurin formula (a table of the series for arguments greater than 0.01 is given). Finally, the
use of the characteristic vibrational temperature in evaluating vibrational partition functions is
demonstrated.




Statistical Thermodynamics Lecture No. 1

From the earliest stages of our study of chemistry, the behaviour of matter is explained to us in
terms of various molecular models. When we come to the study of thermodynamics, we find
that the main aim is to derive general relations describing the energetics of the transformations
of substances - the generality of these results requires that they be derived largely without
assuming a molecular model of matter. The purpose of statistical thermodynamics is to achieve
a synthesis of these two viewpoints, i.e., to predict thermodynamic properties of matter from a
molecular model.

Since most molecules are massive enough to be described with reasonable accuracy by classical
mechanics, we could expect in principle to determine the positions and velocities of each
molecule as a function of time by solution of Newton's equations of motion. While this is
computationally feasible for collections of a few hundred molecules, it is completely out of the
question for macroscopic quantities of matter. The unimaginably huge numbers of molecules in
real physical systems compels us to adopt a statistical approach, in which we relate
thermodynamic observables to average properties of molecules.

The atoms or molecules in a substance are in ceaseless motion, but at any instant of time we
can in principle characterise the state of the substance by a set of particle positions and
momenta, which we refer to as a microstate. Each microstate is characterised by an energy. We
seek to describe the substance by determining the relative importance of microstates of a given
energy.

There are two ways in which this can in principle be done. One way is to observe the system
for a sufficiently long time, and see how much time it spends in microstates with a given
energy. The other way is to imagine a a collection of copies of the system - called an ensemble
- sufficienty large in number that each possible microstate is represented at least once. If the
members of the ensemble are in thermal contact with each other but prevented from exchanging
matter (a canonical ensemble), we can expect a distribution of energies to be established, in
which relatively few systems are in microstates with very high or very low energies. The
determination of this distribution is the central goal of statistical thermodynamics. The time-
average and ensemble-average descriptions of the system are generally assumed to be
equivalent: this assumption is referred to as the ergodic hypothesis.

If the members of the ensemble are assumed to be thermally as well as mechanically isolated
from each other (i.e., we have a microcanonical ensemble), what can we say about the
distribution of microstates? The answer is 'nothing’ - all we can do is to make the assumption
that in a microcanonical ensemble microstates of the same energy are equally probable. This
assumption is called the postulate of equal a priori probabilities. It is not provable, but it is
retained because the predictions of statistical mechanics have been shown to be in good
agreement with experiment,

To proceed further with the development of a statistical model of matter, we need to introduce
some fundamental concepts from statistics and probability. The most important of these
concepts is that of a distribution function, or probability density, which enables us to determine
the probability that some random variable x will have an energy lying in some specified range.
(In the statistical-mechanical context, this random variable is molecular energy or some
coordinate on which the energy depends, but at the present point it is not necessary to be more
specific than this.) The distribution function f(x) is defined so that the probability that x lies
between x and x + dx is f(x)dx. The probability of finding a value of x between x; and x; is

therefore given by an integral of the probability density:

X,

P(Jt1 <x < xz) = j:{(x) dx. (1)

*1




For the probabilities to be meaningful, the distribution function must be normalised, i.e.

P(-oo < x < 00) = -[f(x)dx = 1. 2)

This simply says that any value of x must have some probability. The average or expectation
value of x is given by

oo

<> = Ix ) dx. 3)

-0

We shall also require the concept of statistical independence. If two events are independent, the
probability that both will occur simultaneously is given by the product of the individual
probabilities. For example, in a gas of non-interacting particles, the energy possessed by one
particle is independent of the energy possessed by another. If we let f(£1) be the probability

that particle 1 has energy E; and f(E;) be the probability that particle 2 has energy Ej, then the
probability that the pair of particles has an energy E; + E3 is fIE )(E?).

We can use the above statistical concepts to derive the form of the energy distribution function
for a gas of noninteracting particles. The starting point is the functional equation that results
from the statistical independence of the energies of two particles:

RE, +E) = fEE @

If we differentiate the left-hand side of this equation partially with respect to either E; or E2, we
get the same result:

OE, +E) _dAE +E) _ E +Ey)
0E,  d(E,+Ep) = OE,

This means that the results of similar differentiation of the other sides of the functional equation
must also be equal:

3)

FENRE,) = RE)f(E,). (6)
Division of both sides of this equation by f{E1)f(E2) results in:

J(E)  [(E,)

= = B, 7
REy ~ FEy P @
where B'is a constant. The solution to this equation is
£E) = o, ®)

where o is another constant, which can be determined by the normalisation condition. If the
degeneracy or statistical weight of each state of energy E is denoted by g(E), normalization
requires that

jg(E)f(E) dE = jg(E)e“'EdE -1 ©)
0 1]

This integral can be expected to exist only if B’ is negative, so we write f° = - B where B > 0,




and

o = %—, where z = jg(E)e'ﬁEdE (10)
0

is known as the partition function. Where the particles in the system are restricted to discrete
encrgies, the partition function involves a summation rather than an integral:

oo

7 = Zg‘. ePE. (11)

i=1
The resulting distribution of molecular energies is referred to as the Boltzmann Distribution. In
either the discrete or continuous case it is clear from the above analysis that the significance of
the partition function is in ensuring that the probabilities of the accessible energy states sum to
unity. Furthermore, as we shall see in subsequent lectures, all the thermodynamic functions
can be expressed in terms of the partition function.
Learning Objectives
Knowledge
1.1.1 Define the terms ‘canonical ensemble’ and ‘microcanonical ensemble’.

1.1.2 State the ergodic hypothesis and the principle of equal a priori probabilities.

1.1.3 State the relation between the probability of the simultaneous occurrence of two
statistically-independent events in terms of the individual probabilities.

1.1.4 State the normalization condition that must be satisfied by a probability density
function.

1.1.5 State the formula for the expectation value of a quantity in terms of its probability
density.

Comprehension

1.2.1 Show how the assumption of statistical independence of molecular energies in a system
of noninteracting particles leads to a functional equation for the distribution function.

1.2.2 Explain the significance of the normalization condition and the expectation value
obtained from a probability density.

Application
Given a probability density function, work out
1.3.1 the normalization constant.
1.3.2 the expectation value by application of the general formula.
Analysis
1.4.1 Derive the Boltzmann Distribution by transformation of the functional equation into a

differential equation and applying the normalization condition, for systems of
noninteracting particles that can assume either continuous or discrete energies.




Example: Properties of Distribution Functions

We consider here an example illustrating the operation of the fundamental properties of
distribution functions that we shall be using many times in our consideration of the applications
of statistical thermodynamics. The particular example has nothing to do with statistical
thermodynamics, but is chosen merely because the functions involved are quite simple and can
be dealt with by elementary calculus.

A random variable is said to have a Cauchy distribution if its probability density
function is given by

fix) = a—z’i? for -00 < X < o0, (12)

(a) Express k in terms of a by application of the normalization condition.

(b) Determine the expectation value of x.

(9] Find expressions for: the cumulative probability distribution (i.e., the probability that x
is less than some value xg); its complement (i.e., the probability that x is greater than

some value Xg), and the probability that x lies between Xy and xj.

(d)  Sketch graphs of f, and the cumulative distribution function and its complement as a
funcdon of xy/a.

(a) We note that since the given function is even (i.e., fix) = f(-x)), application of the
normalization condition yields

J:}(x)d.x = Zfﬂx)dx = 1. (13)
= 0

The integral involved here can be evaluated by elementary methods (substitution of x =
a tan 8) or looked up in a table of integrals:

bk gy = k'@ = EK
Ja2+x2dx = kit ey = 2K (14)
Therefore,
k=9  and f(x)=azafcx2= 1 (15)
na (1+ -
2
(b)  The expectation value of x is
‘ _ 1 r x -
[ ax = & [—2gax =0 (16)
2
a

This is so because the integrand is an odd function of x; the integrals from 0 to some
finite value xo and from O to -xo are equal and opposite, for all values of x¢. For a

symmetrical function such as this one it is intuitively reasonable to expect the mean
value to lie exactly at the midpoint of the graph.
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The cumulative probability distribution is
Caclaxyo 11, a%
P(-°‘°<X S_xo) = E[Etan (E)]_m = E + i—tan (a), (17)
so that the complementary function is
P(x0_<_x<oo)= 1 - Pl-= < x < X))
~1 1. 1750
=5 7 tan (—a')- 18)
From these results, the probability of finding a value of x between x; and x2 is
Px, < X € X)) = L an (2 - tan (L)1 (19)
1 =7 =72 19 a a’
The graphs of the required functions are as follows. Curve 1: nafix); curve 2: P(x < xg);
curve 3: P(x > xg).
1
3 2
| 1 |
-10 -5 0 5 10
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Exercises on Distribution Functions

1.

A random variable n has a probability density given by

fln) = Ce? b n=012,..

where @ and b are positive constants. Determine the constant C in terms of 2 and b, and
calculate the expectation value of n. Sketch a graph of this expectation value as a
function of the parameter b, assuming thata = 0.

[Hint: you might find the identities

an = 1_{x_ r;nxn-l = 1

= a-x°

to be useful.]

A random variable is restricted to the two possible values n = +1, according to the
probability density given by

fin)y =Ccd"

where p is a positive parameter and C is a normalisation constant. Determine C , and
sketch a graph of the expectation value from the normalised density function as a
function of p.

A random variable is said to have a Weibull distribution if its probability density is
given by
B-1_-axf
fx) = kx* " e,
where x > 0 and o and J are positive parameters.

(i) Express k in terms of o and p.

(ii) For B =2 and o = 1, draw a graph of the normalised probability density and the
corresponding cumulative distribution.

[The following resuits might be useful in working out the integral appearing in the
cumulative distribution:

d ;B\ _ p.B-1 du _
Lofh - g, _[f[u(x)];i;dx -_[f(u)du.]

Find the normalization constant and the expectation value of a random variable x
characterised by the probability density

fx) = ce”

where x can vary continuously between -1 and 1, and p is a positive parameter. Find
the normalising constant and plot the expectation value as a function of p. Compare
your result with your answer to Problem 2. [The following integral will be of use:

px ____1_ __1_ px
Ixc dx—p(x p)c ].




Statistical Thermodynamics Lecture No. 2

In the previous lecture we saw how the Boltzmann distribution function could be derived in a
simple way from the assumption that the energies possessed by two members of an ensemble
are statistically independent. We now consider a more general and rigorous derivation that
serves to illustrate another important property of the Boltzmann distribution - that it is the most
probable distribution consistent with the constraints that the number of members and the total

energy of the ensemble are both fixed.

The starting point in this alternative derivation is the assumption that the ensemble consists of
N, systems distributed in microstates with energy Ey,....Ny particles in states with energy En.
We are faced with the problem of determining the number of ways in which such a distribution
can be constructed. By application of combinatorial analysis (sec Further Information), the
number of ways of distributing the systems among the states is readily shown to be

_ (N1 +N2 + ... +NN)!

4
N,IN,I N

We can identify the probability of a given set of Ns with the number of ways in which it can be
constructed. For example, one can imagine a situation in which nearly all of the systems are in
the lowest possible energy state and the remainder are in an extremely high state, with none in
states of intermediate energy. This is intuitively very much less probable than one in which
intermediate states are occupied, and can be realised in a great deal fewer possible ways. We
can therefore identify the required distribution as that which gives the maximum value of In Q.

In general, the maximum value of a function of several variables can be found by
differentiating the function partially with respect to each variable and setting the result equal to
zero. In this situation, the variables concerned are the occupation numbers N, but it is to be
observed that the Ns cannot be varied independently - if we increase one of the Ns we do so at
the expense of at least one other. We must therefore identify the state of the system as the most
probable set of Ns, consistent with a constant total number of particles and constant total
energy of the system. These constraints can be expressed by the equations

DN=Np or DN -Np=0 @
i t

D NE =E or NE, - E. = 0 3
; .

[

The constrained maximum of In  is found by use of Lagrange’s method of undetermined
glultiplicrs, which involves finding the maximum value of a new objective function F defined
y

F=InQ+aIN - N)+ BOQNE, - Ep @

where o and p are constant parameters. The general idea is to express the set of Ns that
maximises F in terms of these parameters and then to find values of the parameters by
application of the constraints. To proceed further, we need a way of evaluating the factorials of
the huge numbers present in the numerator and denominator of . This is provided by
Stirling’s formula:

InN! ~NInN-N or N!= (%)”. (5)




Therefore

In

NplnNp - Np - INInN; - NjJ - IN;InN, - Nyl -
= NyInNy - NyInN, - N,InN, -.e NyInNy; ©6)

the error associated with the use of Stirling’s formula for sufficiently large numbers is
negligible. To find the Ns for which F is a maximum we differentiate F partially with respect to
each N and set the result to zero; this gives a set of NT simultaneous equations. This is not

nearly as complicated as one might suppose, since each equation involves only one N. Thus
when In @ is differentiated partially with respect to Nj, the only nonzero term is

9 - N L - -
N N.InN,) = N N +# LInN, = InN, + 1 = In¥, 0

where again the error here is insignificant. Differentiation of F with respect to N; therefore
produces

-a.-BE.
In Nj + o + BEJ. =0 or N}. = caB Lj=123,..N ®)

We can determine the constant o by applying the finite size constraint expressed by equation 2:

ZNf = c'“Ze-BEj =N,
i

i

e = —L 9)

The probability of a state with energy E; is therefore:

N, B

#T— 2 e'BEi

P(E) = (10)

The sum in the denominator is immediately recognisable as the partition function for a system
restricted to discrete energy levels. We shall see that the thermodynamic properties of the
system can all be calculated from a knowledge of this quantity. In general, we expect many
states to have the same energy, so that the sum in the partition function contains groups of
identical terms. We can therefore rewrite the partition function as a sum over energy levels
rat}_lc;; than states, accounting for the identical terms by including a degeneracy or statistical
weight g

_BE
Z=Yge " an
k

The distribution function in its present form expresses all occupation probabilities in terms of
the remaining Lagrange multiplier p. We can see from the requirement that the argument of an
exponential must be dimensionless that § has the dimensions of energy, but to identify it more
specifically we have to apply the theory to this simplest possible physical system - the classical
monatomic perfect gas. -




Learning Objectives
Comprehension

2.2.1 Identify the formation of a distribution of ensemble members among energy states as a
combinatorial problem.

2.2.2 Explain the relationship between the probability of a state and the number of ways it can
be realised.

2.2.3 Explain the lack of independence of the numbers of systems in each subgroup.
2.2.4 Describe the constraints to be satisfied by the Ns that maximise the value of In Q.
Application

2.3.1 Estimate factorials of large numbers by use of the Stirling approximation.
Analysis

2.4.1 State the conditions that must be satisfied by the constrained maximum of In Q
according to the the Lagrange method of undetermined multipliers.

2.4.2 Show how the Boltzmann distribution arises by logarithmic differentiation of the
objective function F.

2.4.3 Demonstrate the relationship between the Lagrange multiplier o and the partition
function, in terms of the normalization of the distribution.

Further Information: Combinatorial Analysis

Combinatorial Analysis is based on a result known as the fundamental principle of counting,
which states that if one decision can be made in n ways, and another decision can be made in m
ways, the total number of ways that both decisions can be made is mn. For example, if we are
interested in enumerating the possible permutations or sequences of n objects, the position of
the first object can be selected in n ways, that of the second in n - 1 ways, and so on, until
finally there is only one position possible for the last object. The total number of such
sequences is therefore n! = n(n - 1)(n - 2)...3.2.1. If the objects are to be taken in small groups
of r, the number of possible permutations is

P'=n(n-)n-2)n-3).(n-r+1) =
(n-nt
If we are not interested in the order in which the objects in each small group are arranged, we
have to divide this number by the number of permutations of r objects. The number of
combinations is

The generalised form of this result that describes the number of combinations of n objects in p
groups containing ri, 2, r3,..., ', members, such thatry + r2 +rs +..+rp =n,is

!
(r1 +rytry+ot rp).

UL !




This is simply the total number of possible permutations of all the objects, divided by the
number of permutations possible within each subgroup. In our case, the objects are the
members of the ensemble, and the groups are the states. The intention of the above remarks is
to familiarise you with the ideas that are relevant to the statistical mechanical problem - much
more detailed discussions of combinatorial theory may be found in any good textbook on
probability and statistics.

Further Information: Stirling’s Approximation

Stirling’s formula can be derived quite simply by observing that the log of a factorial is the sum
of the logs of the factors:

Inn! =lna+Inr-D)+In@x-2)+ .. +n3+In2 +1Inl.

The sum of all these logs can be approximated by an integral

n n
Zlnk:jlnxdx
k=1 1

which can be readily evaluated by integration by parts:

n n n
dx n d
l { = —_— = - =
i[nxix 1Jilnxabcabc [xlnx]1 Jx i {In x) dx
1

n
=nlnn-1Inl -Jldx

=nlhn-n+1

Since 1 is negligible in comparison with the sort of numbers we are interested in, we obtain the
desired result:

Inn! ~nlnn - n

Exercise:

Find a table of factorials in a mathematical handbook, and compare the results given with those
obtained from Stirling’s formula.




Statistical Thermodynamics Lecture No. 3

We have so far seen how the Boltzmann distribution can be derived in two different ways that
each offer a different perspective on the fundamental problem of determining the energy
distribution. In the first, the crucial assumption was seen to be that the energies of members of
the ensemble are statistically independent random variables, and in the second, the distribution
was shown to be the most probable arrangement consistent with a finite total size and energy of
the ensemble. In each case, however, the significance of the partition function as a normalising
constant is very clearly illustrated. We now consider the problem of establishing a connexion
between the partition function and macroscopic thermodynamic functions.

For a system with allowed states of energy E; and degeneracy g; the formula for Z is
- BE;
Z = Zgjc (1)
J

We can determine an average energy by applying the formula for an expectation value:
-BEj
£<

<E> = ZEjgj PE) = ZE]. — )
7] 1

This can be related to Z by noting that

dlnZ _19Z _ 1 -BE;
T =Zos " 7 Ej E.g}.e ) 3)
We therefore obtain the result
dlnZ
<E = e e— 4
> 2B €y

This ensemble average energy can be identified as the internal energy of the system, U.

Identification of the other thermodynamic functions in terms of the partition function can be
achieved by considering the dependence of Z on p and V, which, by the usual procedure for
taking the total differentiat of a function of several variables, is expressed by

dinZ) = (a—g'[;—%)vdﬁ + @2 gy

dv. )

- -Ud + &5,

We can write this in terms of the differential of U by observing that

d(BU) = Udp + BdU = -Udp = BdU - d(BU) (6)
so that

dv = Laanz + puy - L @lnZ,

3 5 v gdV. 0

Comparing this with the combined First and Second Laws of Thermodynamics:

dU = TdS - pdVv (8)




we can conclude that
TdS = éd(lnz + BU)

ie., % = kT, dS = kd(InZ + BU) ©)
where k is a constant independent of temperature, and
_10dInZ 10

In terms of temperature and volume, our thermodynamic formulae can be written

- aan\ ' —_ aan
U = kT STy P = kT (505

S=klnZ + % + constant. (11)
Since the expression for S in equation 11 follows from integration of equation 9 we cannot
avoid the constant of integration. If the (arbitrary) constant in the expression for the entropy is
set equal to zero, as is reasonable if the Third Law of Thermodynamics is invoked, an
expression can be derived for the Helmbholtz function:

A=U-T§S = -ThhZ (12)

In elementary treatments of thermodynamics, the entropy is often identified as a measure of the
disorder or randomness in a system. We can illustrate this microscopic significance of the
entropy very clearly by use of a statistical concept called the uncertainty, which can be used to
characterise an experiment with many different possible outcomes, each of probability ; :

H=- ZPJ. InP, (13)
7

where the summation is over all possible outcomes. Clearly, this quantity is positive, since all
the probabilities are less than 1. It can also be seen that H will be a maximum if all outcomes
have equal probabilities. Intuitively, this corresponds to having a minimum of information. To
apply this idea to statistical mechanics we regard this "experiment” as the assignment of the
system to one of its possible microstates of energy E; and use the Boltzmann distribution for

the corresponding probability, with the result

-BE;
; ZP(E}.) InE) = ZP(Ej) InZ + ZEJP(EJ.)B =InZ + BU, (14
I J 7

This is identical to the earlier expression for the entropy divided by £, if the integration constant
is set equal to zero. Thus, the entropy is proportional to the statistical uncertainty of the
system.It can be seen from this result that the thermodynamic state of the system is determined
by the probabilities of all possible microstates. We can also see how this result arises from the
earlier expression for the total degeneracy of the ensemble:

Q=

N
T __ a5)
NI
7]

11




Taking logs and applying Stirling's approximation:
N,
InQ = NyInN, - ZNj InN; = -ZNJ. In (71 (16)
J J

since Ny is the number of systems in the canonical ensemble. The average contribution to the
entropy per system is therefore obtained by dividing by Nr1.This gives

N. N,
InW = - E(Rr—:’;)ln(—ﬁ) - - EP(EJ.) In P(E) (17)
J 7

so that
S=klnW, (18)

This famous formula is inscribed on the memorial to Ludwig Boltzmann in Vienna. It is clear
from this result that when there is only one possible configuration of the system (as in a perfect
crystal at absolute zero), the entropy is zero. This lends support to our earlier assumption that
the integration constant in equation 11 could be set equal to zero. The physical implication of
equation 18 is that the positive entropy associated with higher temperatures can be regarded as
a measure of our lack of information about the molecular configuration of a system.

Learning Objectives

Knowledge

3.1.1 State the formula for the statistical uncertainty.

Comprehension

3.2.1 Explain why the ensemble average energy can be regarded as the internal energy.

3.2.2 Describe the behaviour of the uncertainty of an experiment in the limiting cases where
there is only one possible outcome and where all outcomes are equally probable.

3.2.3 Describe how the uncertainty can be identified with the entropy of a system.

3.2.4 Describe the connexion between the statistical-mechanical definition of entropy and the
Third Law of Thermodynamics.

Application

3.3.1 Calculate the difference in entropy between two configurations of a system
characterised by different values of W.

Analysis
3.4.1 Demonstrate the equivalence of the definitions of U given by equations 2, 4, and 11.
3.4.2 Demonstrate the equivalence of the definitions of S given by equations 11 and 14.

3.4.3 Justify the steps in the derivations of equations 9, 11, 14, and 18.




Statistical Thermodynamics Lecture No. 4

The purpose of this lecture is to apply the formulae that we have derived to the simplest
possible system - the classical monatomic perfect gas. Our purpose is not only to demonstrate
the calculation of the thermodynamic functions, but more importantly, to identify the
Boltzmann constant k.

We assume our system to consist of N atoms of mass m, confined to a volume V at
temperature T. We further assume that these particles can be treated classically, i.e., that they
can assume a continuous range of kinetic energy. This second assumption is reasonable if the
atoms are sufficiently massive that they can be described by Newton’s equations of motion as
opposed to the Schroedinger equation of quantum mechanics. (As we shall see in our later
discussion of the statistical mechanics of quantum systems, quantum effects in gases
possessing only translational degrees of freedom are negligible except under the most extreme
conditions.) The energy of the system is therefore the sum of the kinetic energies of the

atoms:
E = Z}lm V2, )
7

where boldface type has been used to signify that the quantity represented is a vector. In terms
of the components of a single velocity vector v;, we have

v. = (v.,v.,Vv.) so that Vo= pep, = 2+ +V2, 2)
i x’ iy’ iz i i i ix iy iz

Each microstate of the system requires specification of the position and velocity of each atom,
in terms of its position in the container and the values of its velocity components. There are
evidently 6N independent variables or coordinates that have to be considered; the range of
possible values of all these coordinates define the phase space of the system. To work out the
partition function for the gas, it is necessary to integrate over all space coordinates and all
values of the velocity components for each atom:

o0

N
Z = -—IWJ,...chp[- BZ%mviz]d"ld"r'“drNva’ (3
Nthy' v = i=1

where the abbreviations

dr = dx dy dz and dv = dvydvy dv,

have been used, and Ay is a factor that ensures that the partition function is dimensionless (we

shall learn later in our treatment of quantum systems that this quantity is related to the minimum
error with which we can specify simultaneously the position and momentum of a particle). The
factor of N! results because the atoms are indistinguishable: the N individual energies can be
permuted among the N atoms in N! ways. Major simplifications of this formidable-looking
expression can be made by observing that the integrations over space and velocity coordinates
are the same for all atoms. Therefore:

7 -z

- I @

where

CQOO0

1
2 = Lof [[fexol- 0% + ] + vhidr dvavds,
0

R Setet

Since the energy of the atoms is completely independent of the spatial coordinates, the integral
over dr gives the volume of the container, and since the integrations over each velocity
component can be performed separately and are all equal, we obtain




< 2
z = l’{jexp(— Bmvey 4y 2. )
P 2
0-—60

The integral over the velocity coordinate is the simplest of a class of expressions called
Gaussian Integrals. In our later more detailed discussion of kinetic theory, we shall see that
such integrals can in fact be evaluated by fairly simple methods, but for the present, we make
use of the well-known result (that can be found in tables of definite integrals)

o2 _ T
je dx = \/;— where o, > 0. 6)
Therefore
3 372
7 = Y 2ry2 o VKT, @
n Bm h
1] 0
3N
2
z - Q) ®)
T n?
and

322

1nz=N1n[l3(2-’;-$) 1-NInN + N. 9)
h

0
The thermodynamic functions can all be derived from In Z. For example, the pressure is

— dlnZ, _ NkT
p = kT (——-—av It Vo (10)
This is identical with the ideal gas equation of state
nRT
= 11
% (11)
if we make the identification
= R
k N, , (12)
where N, is Avogadro’s number. Another important result is the internal energy, which is
dinZ INET
= kT (F—=—£), ,6 = =—=—==
| U = kg, < L (13)
from which follows in turn the expression for the heat capacity
Cy = Gpv 5 5 (14)

Learning Objectives

Knowledge

4,1.1 Write the expression for the total energy of a monatomic perfect gas, in terms of the
velocity vectors for each atom and the components of these vectors.

4.1.2 Identify the coordinates required for specification of each microstate of the gas.

Comprehension
4.2.1 Explain why the indistinguishability of the atoms leads to the factor of N! in equation 4.

Analysis
4.4.1 Justify all the steps in the reduction of equation 3 to equation 8.




Evaluation of Gaussian Integrals
In statistical mechanics it is frequently of interest to evaluate integrals of Gaussian functions.

The simplest such Gaussian integral is

o3

Gy = [ expt-ac®) ax (1)
0

Although there is no indefinite integral or antiderivative for the integrand, the above definite
integral can be evaluated by a transformation of coordinates, as follows.

We consider first the double integral

1= [ ] exol-at? + % dxay @)
00
which we observe can be identified as the square of the integral of interest:

I j expl-a(2 + y)] dxdy = (J‘exp(—(x.xz) dx)(jcxp(-ayz) dy) (3)
00 0 0

We next observe that the double integral / can be evaluated by transformation to polar
coordinates:

x =rcos®, y =rsin (4a)
dxdy = rdrdo (4b)
X%+ y2 = r? (4c)

uaTC/z

- ar
I J(‘)[exp(a )yrdrd®

A ; =1
L .[200' expl-ar?) dr = T )
0
From eq. 3, relating / to Go, we then have
=JT = o) de = L[E
Gy = 4T = [ explos? ax = L[% ©)
0
We next consider the evaluation of integrals of the form
G, = sz" exp(-ox?) dx (7
T p )
0
and
Gy = jx2”+lcxp(-ax2)dx (8)




The first class of these integrals can be obtained by differentiating with respect to ot

oo L]

n
sz"exp(-oax2) dx = (-1)'1 a?x" jcxp(—axz) dx ()]
0 0
Therefore, using the above expression for the integral Go:
_ 0 ) _ _4n
G2 = ( aOL)J‘exp( oax)dx = 2 (10)

0
and generally,

_ n an 1 fmt, _ 1.3.5....2n-1) T
G2Pz = D W(-j‘/%) - 2r|+1 a2n+1 (1)

The first integral of the type in eq. (8) can be evaluated by usual integration methods:
Gl = Ix exp(—oaxz) dx = % ‘[Zax exp(—ax2) dx
0 0

.
T 2o (12)

As before, differentiation with respect to o introduces a factor of x2 into the integrand:

= (9= ) dx = -
Gy = (D) x expto®y ax = — (13)
0
so that in general,
_ ng" 1, _ n!
Gopun = V376G = 5 w1 (14)



Statistical Mechanics Lecture No. 3

The purpose of this class is to illustrate the operation of the statistical-mechanical principles
developed so far by working through a numerical example.

Exercise:
Considering a simple hypothetical system of particles that can be distributed among five
equally-spaced energy levels given by

£ = G - De, j=12345. (1)

Calculate:

@) the partition function

(i)  the occupation probability of each state
(iii) the internal energy in units of AT

(iv)  the entropy in units of k

(v) the Helmholtz energy in units of kT

assuming that ¢/kT = 5,1, and 0.1.

A. e/kT = 5.

State P.F. Term Probability Energy Term Entropy Term

1

5

Sum

Helmoltz Energy/kT =
B. e/kT = 1.

State P.F. Term Probability Energy Term Entropy Term

1

5

um

Helmoltz Energy/kT =



e/kT = 0.1,

State | P.F. Term Probability Energy Term Entropy Term
1
2
3
4
5
um
Questions:
I. In each case, plot a graph or histogram showing the probable fractions of particles in
each state.
2. What trend do you observe in the entropy as a function of &/kT ? Interpret this trend in

terms of the information we have about the molecular configuration, as expressed by
your answer to question 1.

3. How do the Internal Energy and Helmholtz function compare with the energies in each
of these three situations?




Statistical Thermodynamics Lecture No. 6

From the partition function determined earlier for the classical perfect gas, we can determine the
probability that a given molecule will have velocity components in specified ranges. In
particular, the probability that a molecule will have one of its velocity components in a
particular range is described by a density function obtained by integrating over all possible
values of the other velocity components and the space coordinates. This is called the marginal

density function and for (say) the x velocity component, and is defined by the equation

flvy) dvy = _;-.;? j J. J exp(- E’k%,—[vi + v§ +v]dr dv,dv,dv,
(1

-

= _1_‘_/_ (J:;xp[_ Tﬁ]d‘) )( wcxp[- ﬂv_z‘_]dv ) exp[_ ﬂ]dv
z h?) J 26T J 2k 7 2kT %
m 172 mvi
= G Pl gpri®x M

which is the probability that a molecule has an x-velocity component between vy and vy + dvx.

We can see that this distribution function is correctly normalised since when it is integrated
over all possible values of vy, we obtain

o o0 2
. = n 1/2 : mv, -
jf_x(vx) dv, = G2 [expl- 221 v, = 1. @)
We can also see that the expectation value of vy, viz.,
-] oo 2
. 112 mv
Jrtits o, = " [owexnl- 371 v = 0 ®

since the integrand is an odd function. Identical results obviously apply to the other
components. We can therefore conclude that the velocity components are normally distributed
about a mean value of zero. The shape of this distribution is shown in Figure 1, for different

values of the parameter (kT/m)1/2. The distribution is seen to become broader for increasing

temperature. (kT/m)''® =500 m s’
15x10™° =
— 10
z
5 —
0
-1000 -500 0 500 1000
v,/m s

Figure 1: Distribution functions for velocity components.




While the motion of any particular molecule can be de
components, it often proves more convenient to specify

scribed by specifying its velocity
its speed, v, and the direction of

motion. This direction is expressed in terms of two angles, 6 and ¢. The relation between the
three velocity components vy, vy and v, and the spherical polar coordinates v, @ and ¢ is

expressed by the equations

C))

v, = vsin 6 cos ¢, v, = v sin 0 sin ¢, v, = vcos©
v = Jr2i+vi+v)
and may be represented as in Figure 2:
Perspective view: Vv,
\Y v ¥
0
/
¢ Vx
z
Top view: v Side view: v,
¥
v cos O
v sin O cos ¢ 0
—_
sin @ sin ¢ N ¢ Vy 'I Vy
Y v sin ©
v sin O

Figure 2: Definition of polar coordinates.




To transform the distribution function, it is necessary to rewrite the phase space volume
element in terms of the polar coordinates. By tedious but straightforward manipulations that
can be found in any textbook on advanced calculus, it can be shown that

dv,dv,dv, = vsin 0 dv d do (5)
From the diagrams given, it is clear that 6 can vary between 0 and 7 and ¢ between 0 and 2R.

The probability that a given molecule is in the phase space element drdv about r and v can
therefore be written

3
h = 2
o m 2, mviydrdy _ 1
v Guer SPC T B2V
0

m_\32 3 my*
Gk XPC P drdv

_ 1, m 32 mv? 2.
= (anT) exp( —-—ZkT)dr vsin O dv dB do¢.

In the absence of external potential fields, all positions in the container are equivalent, and all
the directions corresponding to the angles @ and ¢ are equivalent by symmetry. The probability
that a molecule possesses a speed between v and v + dv is therefore

k14 2R
2
(j%-’—) (jsin 8 d6) (j ) expl- 22y dv = M) av,
14 0 0

where

- 2, m 32 o myv*
This function is known as the Maxwell-Boltzmann distribution of molecular speeds. The
physical significance of the transformation used to obtain equation 6 can also be understood by
observing that since the directions are all equivalent, the sum or integral of all polar velocity-

space volume elements produces a spherical shell of area 4nv2 and thickness dv.

(kT/m) =500 ms"
1.0x10°°
0.8
> 0.6 —
=

0.4 -

-1

0.5 1500 m s

0.0- T T T ]

0 500 1000 1500 2000
vim s

Figure 3: Mawell distribution function for molecular speeds.




The density functions shown in Figures 2 and 3 can both be characterised by an expectation
value and a most probable value of the respective variable (velocity component or speed,
respectively), i.e., a value for which the density function has its maximum value. In the case of
the velocity component function, it clear from the symmetry of the graph that the most probable
value is the same as the expectation value. This is not the case for the distribution of speeds
given by equation 6. The most probable speed is defined by the condition that

dn(v)
dv

_ m_ 32, o mv? ) my* -
= dn(gr ) expt 5 (v - G = 0,

v = v, = 2L %

The expectation value or average speed is

or

oo

o0 2
= l = 4n(-"% mJ‘\F‘ . my_
<y> 0 v1(v) dv n(Zka) D exp( 2kT) dv

- JEL ®)

It is also possible to determine a mean-square speed:

o

m 324 mvi o _ 3kT
G IV xPC % ¥ = Tm

i
<v“> = 4T

so that the root-mean-square speed is

Vims = <y?>12 = ,/%ﬁ—T (10)

All these characteristic speeds are seen to be directly proportional to the square root of
temperature and inversely proportional to the molecular mass. We can express them all relative
10 Vin:

<Y> = —J%v”' and Vems = \/%vm. (11)

Mean speeds of gas molecules at 300 K are typically several hundred meters per second. For
example, for a nitrogen rnolecule (mass 4.648 x 10-26 kg),

f -23 1
v, = \/2><(1.380x10 JK )Y x (300 K) _ 422.1ms_1,

(4.648 x 102 kg)
so that from equation 11 we obtain

2 - -
<y> = ﬁv’" = 4762 m s’ and Vims = \/%vm = 5169 ms.

These speeds are approximately 1600 km/h or 1000 mph.




Learning Objectives
Knowledge

6.1.1 Define the marginal density function for a velocity component in terms of the partition
function.

6.1.2 State the equation relating the differential volume elements of cartesian and spherical
polar coordinates.

Comprehension

6.2.1 Describe the form of the marginal density function for each velocity component of a
gas, and compare this with the form of the distribution of molecular speeds.

6.2.2 Demonstrate graphically the physical significance of the expectation value and most
probable values from the density function.

6.2.3 Describe qualitatively how the transformation of the velocity-component distribution to

polar coordinates leads to a velocity-space element that is a spherical shell of area 47v2
and thickness dv.

Application

Calculate, according to the Maxwell-Boltzmann distribution of molecular speeds:
6.3.1 most probable speed.

6.3.2 the mean speed.

6.3.3 the root-mean-square speed.

Analysis

6.4.1 Derive the expressions for the most probable speed, mean speed and root-mean-square
speed.

6.4.2 Derive the expressions for the marginal probability density functions of one and two
velocity components.

6.4.3 Apply the distribution functions to evaluate expectation values for simple functions of
the speed or velocity components.



Problems:

6.1  Calculate the most probable speed, the mean speed and the root-mean-square speed for
methane molecules (molar mass 16.04 g/mol) at

() 300K;
(ii) 500K;
(i) 1000K.

6.2  From the Maxwell-Boltzmann distribution function, estimate the probability that an
oxygen molecule (molar mass 32.00 g/mol) will have a speed of 500 £ 1 m/s (i.e.,
between 499 and 501 my/s) at 300 K. How does this speed compare with the mean
speed at the giver: temperature?

6.3 At what temperature will the most probable speed in a gas of argon atoms (molar mass
39.95 g/mol) be 700 m/s?

6.4  In an earlier Jecture, we arrived at the important result that the average kinetic energy in
a monatomic perfect gas is 3k7/2, irrespective of the atomic mass. By applying the
definition of kinetic energy, show that this result also follows from our expression for
the mean square speed according to the Maxwell-Boltzmann distribution.

6.5(1) Consider a gas of molecules (of molar mass 28 g/mol) at 300 K. Calculate the average
kinetic energy per molecule and the root-mean-square speed.

(ii) Now suppose that the gas has suspended in it minute particles with molar mass 10 000
g/mol. What is the root-mean-square speed of these particles at this temperature?

Solutions

6.1  Use of the formulae requires the mass of the molecules in kg. This is

. (1604g mol ™) x 10 kg g 1)

1

L8 ) - 2664 x 107 ke,
(6.02205 x 107 mol )

Then:

-23 -1 -
v, = ’2";_1.‘ - 2x (1.38064 x 10 J-2I6< ) X (300 K) = 557.6 m S-l,
(2.664 x 10 “kg)

23, -1
<> = % _ \/8 x (1.38064 x 10 ™ 3 Iiﬁ) x (300 K) - 6292 ms,
T x(2.664x 10" kg)

-23 -1
[3kT . K
- 3’,?? _ \/3><(1 38064 x 10 -126 )X BOK) _ coa0m sl
(2.664 x 10 kg)

At the other temperatures the answers are:

500K: v, = 7199ms; <y>

- 812.3m s, Vims = 881.7ms™;

it

1000K: v, = 1018 msY;  <v> = 1149 ms; Ve = 1247 ms),



6.2

6.3

6.4

6.5(i)

(i)

From the definition of n(v), the required probability is

- o a3 o mvE
P~ n(v)Av = 4mv (21tkT) exp( 2kT) Av

5314 x 10°% kg
27 % (1.38064 x 1072 JK ™) x (300 K)

3/2

= 4 x (500 m s1)% x ( )

(5.314 x 1028 kg) x (500 m s™")°

) X )x (2msY) = 3.688 x 107,
2 % (1.38064 x 102 TK ™) x (300 K)

x exp(-

We have

V,, = % or T = 2K

[ |

2

_ (6.634x 107 kg) x (700 m s°1)

1

T 23 -
2x(1.38064x 107 JK )

= 1177 K.

The average molecular kinetic energy is related to the mean-square speed by

<e> = <%mv2> = %m <v?>.
Therefore
_m 3kT _ 3kT
<€> = > “m 7

in agreement with the result obtained directly from the classical partition function.

By application of the relevant formulae,

kT 3% (1.38064 x 107 TK™) x (300 K)
2 2

.23 -1
b = /3’];1" _ 3 x (1.38064 x 10 Jzi( ) x (300 K) 5169 ms.
(4.650 x 10 kg)

<e> = = 6.213 x 10'21 J,

Since the dispersed particles are in thermal (i.e. collisional) equilibrium with the gas
molecules, their mean kinetic energy must be the same:

<e> = %mv,zms = 6213x 107" 7,

but their root-mean-square speed is much smaller:

’ =\/2<e> _ [2x6213x10% ) a0
m (1.661 x 107 kg)




Statistical Thermodynamics Lecture No. 7

In the previous lecture we derived the Maxwell-Boltzmann distribution function for a classical
perfect gas and used it to estimate various average speeds. To obtain a more detailed picture of
the distribution we need to consider the general problem of calculating the probability that a
molecule has a velocity component or speed greater than some specified value. For example,
the probability that a molecule has an x-component of its velocity greater than some value vp is

given by

oD

2

2 3 mv
Py, > V) = Ifx(vx) dv, = (5%)” Jexp(- ) dvy. 1)

v v

0
We can’t evaluate this integral in terms of elementary functions, but by putting

0

u=v, /-2% dv, = 2L ay 2)
we can simplify it to
P(v, >v,) = jl_n—je'“zdu 3)
_m_
Yol 24T
_ 1 m_
= 7 el 347>

where ‘erfc’ is the complementary error function defined by

X
erffcx = ch'"zdu =1 - erfx, and erfx = —Z—Ic‘“zdu.
X n |

The error functions may be evaluated by numerical integration or by various series expansions,
and their values are tabulated in various mathematical handbooks. They are defined such that

lim erfx = 1 and lim erfcx = 0. 4)

X —a X oo

We can appreciate the significance of the factor of 1/2 in equation 3 by recalling that because of
the symmetry of the distribution function, we would obtain the same result for the probability
that v, is less than (i.e., more negative than) - vg. Thus, we can also write

P(lv,l > v) = erfe(v %) (5)

for the probability that the magnitude of v, is greater than vg.

The probability that a molecule has a speed greater than vg is given by the integral of n(v):

o

m 32f 2. mv?
G |7 ePC 2 4 ©)

P(v>v) = Jn(v) dv = 4xn
Yo

Yo

This can be simplified by recalling the definition of the most probable speed v, and making the
substitution u = v/v,,:

m {2 mv2 4 2 -u? 2k1
4 RN LA — - ——— = — = —_——
T (2 T) | v= exp( ) dv Ju e du, Vi = + / )




The integral with respect to u can be expressed in terms of the error function by integration by
parts:

o L

4 |.2 - 4 1 -u? 1 |42
2 llfe¥du = = (-Hue" , + = |e“du}
[ f 2 VolVm 2
szoivm T volvm
v -G v
= 2 0y, ¥m 0
= 2Ghe ™+ el h. ®)

The distribution of molecular energies can be determined from 7(v) by application of the
relation between kinetic energy and speed:

2
E = _m; v = /%E dv

ca

m 32 2 mvi m_2{2E Ey_dE_
1T (—T) jv exp(- ==) dv = 4R T) bjm exp(- =)

2nk 2kT (2Ttk kT [2mE
0 0

and after applying the substitution u = E/kT and cancelling terms, the probability that the
molecular energy is greater than Eo = mvg2/2 is found to be

@

_db
v2mE

Therefore,

v

2 { 172 _-u (;
HE>E) = = |u'e du = |{(E)dE, (11)
@OF[T E-[

where the corresponding density function {(E) is defined by

172
_2 E E
LE) = = W exp(- =) (12)

and is shown in Figure 1 as a function of E/kT. The energy function has a vertical tangent at
E =0, as a result of the square root, in contrast to the corresponding function for the speeds,
which is approximately parabolic when v is close to 0.

|
1 2 3 4

E/KT
Figure 1: Probability density function for molecular energy.




We finally consider the problem of calculating the average velocity of molecules that are
moving in a particular direction. From the symmetry of the velocity distribution, we can
immediately say that the probability that a molecule will have a positive x-component of its
velocity is 1/2. What we are interested in is the average value of the x-component of the
velocity possessed by this half of the molecules. More specifically, we consider the average
value of v, over the range of values from 0 to infinity, This is given by

m 32, expl- TVx %, j AL
o[, exol: 572 dv,) [oxpl- 52 dvy)fexpl- 5t dv
0 —00 -~y
= (I 1’2fv expl- '""er] dv, = [KL = Loy (13)
L 2T 2nm 4

Consider a molecule with a component of its velocity in the direction perpendicular to an
element dA of the container (say, the x-direction). In a time interval 4, the distance travelled by
the molecule defines a box of volume (v,df)dA. The number of molecules in this box is found

by multiplying this volume by the number density, and the total number of molecules striking
the surface dA in time dr is found by integrating over the distribution of all positive values of
vy. Since dr and dA are constants, this is equivalent to (<v>/4)dAdt. Dividing by didA, we find

that the flux or total number of molecules striking unit area of the container per unit time is

J= (%’-)%. (14)

If we have an equimolar mixture of two gases, it is clear from this result and the expression
derived earlier for the mean speed that the ratio of the fluxes of molecules is

2 _ [T
7= (15)

where m; and m; are the molecular masses. This result is known as Graham’s Law.

A closely related problem is that of determining the pressure exerted by the gas. This is found
by observing that each molecule with normal velocity component vy transfers momentumn 2mv;

to the surface. The momentum transfer from such molecules is
(momenturn change per molecule) x (volume) X (number density)
= Qmv,) v,dt dA) (%). (16)

The pressure can be identified as the total momentum transfer per unit area and unit time and is
obtained by integrating this expression over the entire distribution of positive values of v, and

dividing by dAdt.

~ (Ny_m 3 2 _mvy _myy _my;
p = et (szvchp[ ] o Jexpl- 5w fexpl- Tt )
_ Ny m 2., JE 2kT\32 _ NkT
@ Iy om I AL - NAT, a7

This kinetic derivation of the ideal gas equation of state therefore makes rigorous the
elementary interpretation of pressure as resulting from the collisions of molecules with the
walls of their container.



Learning Objectives

Knowledge

7.1.1

State the formula for the probability that a molecule has a velocity component greater
than some specified value.

7.1.2 Define the error function and complementary error function and identify their limiting
values as the argument tends to infinity.

7.1.3 State the formula for the probability that a molecule has a speed greater than some
specified value.

Comprehension

7.2.1 Distinguish between the probability that a molecule has a velocity component greater
than some specified value and the probability that the magnitude of the velocity
component is greater than some value.

7.2.2 Identify and account for the differences in the shape of the probability density functions
for the molecular speeds and energies at low values.

7.2.3 Describe the argument by which the flux of molecules normal to a surface can be

- determined.

7.2.4 Relate the pressure to the rate of momentum transfer resulting from molecular collisions
with the walls of the container.

7.2.5 Describe the argument by which the pressure can be deduced from the Maxwell-
Boltzmann velocity distribution.

Application

Calculate, given tables of the relevant integrals

7.3.1

7.3.2

7.3.3

the probability that a molecule has a velocity component greater than some value relative
to (2kT/m)1/2,

the probability that a molecule has a speed greater than some value relative to
(2kTIm)112,

the probability that a molecule has an energy greater than some value relative to 7.

Analysis

7.4.1

7.4.2

7.4.3

7.4.4

Express the probability that a molecule has a velocity component greater than some
specified value in terms of the error function integral.

Express the probability that a molecule has a speed greater than some specified value in
terms of the error function integral.

Derive the probability that a molecule has an energy greater than some specified value
from the distribution of molecular speeds.

Justify the steps in the derivation of the expression for the flux of molecules normal to a
surface, and in the kinetic derivation of the perfect gas equation of state.
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Problems

7.1

7.2

7.3

7.4

7.5

7.6

Find the probability that a molecule of mass m in a Maxwell-Boltzmann gas at
temperature T has an x-component v, of its velocity such that

Hve > (2kT/m)172
(i) vx > 22kTIm)1/2
(i) AT/m)12< vy < 2(2kT/m)112

In a gas of nitrogen molecules (mass 4.648 x 10-26 kg) at 300 K, find the percentage
with x-velocity components greater than 384.1 m/s.

What percentage of the gas molecules in Problem 7.2 have x-velocity components
between -240.6 m/s and 240.6 m/s?

What percentage of the molecules in a Maxwell-Boltzmann gas have speeds

(1) greater than the most probable speed v,,,?
(ii) greater than 2v,,?
(iii) between v, and 2v,,?

Find the probability that a Maxwell-Boltzmann gas molecule will possess an energy

(i) less than kT/2
(ii) greater than kT’
(iii) between kT/2 and kT.

The dependence of the rate of effusion on molecular mass was of great technical
importance in providing a method of separating the isotopes of uranium in the form of

uranium hexafluoride. Suppose we have a gas consisting of the molecules Z38U19Fg
and 235U19F¢ in the natural isotopic abundances 99.3% and 0.7% respectively.

Calculate the ratio of the fluxes of the two molecules through a small pinhole, and
compare this with the ratio of concentrations in the original mixture.



Solutions

7.1(1) The required probability is obtained by use of equation 3

(i)

(i)

7.2

7.3

_ 1 m _ [2&T
P(vy, > v,) = 5 erfc(v E]CT) where Vo = T
The argument of the complementary error function is clearly 1, so that

0.5x(1 - 0.84270)

. 2kT, _ 1
P(v, > T) =3 erfc (1)

H

0.07865.
Similarly we have
P(v, > 2,/ 2L = %erfc (2) = 0.5x% (1 - 0.99532)
= 0.00234.

These probabilities can be understood as areas under the curves showing the probability
density for velocity components. We can therefore determine the probability that a
molecule has a velocity component in the intermediate range as the difference between
the probabilities (i.e., areas) determined in parts (i) and (i1):

P 2L < v, < 2/2L) = py, > 2Ty . pey, > 2 24T,

= 0.07865 - 0.00234 = 0.07631.

We first need to calculate the quantity

T _ [ 2x(1.38066 x 107 JK) x (300 K)

X1 = = 4222 ms .
(4.648 x 107 kg)

m

The argument of the complementary error function is therefore

m_ _ 384.1 _ -
Vo /ZkT =33 0.90976 ~ 0.91,

s0 that the required percentage is

P(v, > 384.1) x 100% = 100 x%erfc (0.91) = 100 x0.5x (1 - 0.80188)

= 9.9%.

The probability that the x-velocity component is greater in magnitude than 240.6 m s-1
is given by equation (5), but the required probability is the complement of this, which is

Pv,l < vp) = 1 - Pvl > vp) = erf (v, [575).



With v = 240.6 m/s and the data of the previous problem, we have

P(v| < 240.6ms?) = erf(igg'g) = erf (0.57) = 0.57982,

so that 58% of the molecules have velocity components in the given range.

7.4  Solution of this problem requires application of equations 6 - 8:

Yo 2

_ 4 (a2, 2 Yo 5 Vo
P(v>v,) = ﬁju e du _ﬁ(ﬁ)e + erfc(v—m').

vulvm

(i) We are given that vg = vy, so that

POv > v,) = jz—e'l + erfc (1) = 041511 + 1 - 0.84270 = 0.57241.
T

This example illustrates the asymmetry of the distribution of molecular speeds as
compared to that of the velocity components (the mean and most probable values are not
the same).

(ii) With vg = 2v,,,,

P(v>2v,) = %e“ + erfe(2)
T

= 0.04133 + 1 - 099532 = 0.04601.
(i)  From parts (i) and (ii),

P(v,<v<2v,) = Pb>v,) - P(b>2v,)
= 0.57421 - 0.04601 = 0.52820.

7.5  Applying equation (11),

- EJkT
_ 2 .12 -u 2 (.12, -u
P(E >E) = =|u ea’u=1-—~—Ju e du.
fgo/kT ﬁfo

@) With Eg = kT/2 we have
1/2

P(E < ﬂ) = ijul"zc'“du
2 EO

= 0.20359.
(i)  With Eg = &T,
o 1
: 2 ), 172, u 2 | ,12, u
P(E >k =—--Ju ca’u=1——-—J‘u e du
D JEI in g

=1 - 043173 = 0.56827.




(iii)  The fraction of molecules with energies in the intermediate range is determined by the
condition that all three probabilities must sum to unity:

PAL<E <k = 1 - P(E, <Xy - PE > kD)
1 - 0.20359 - 0.56827 = 0.22814,

7.6 By application of equation 14, the ratio of the fluxes is

J _ (NJV) <v>

1
I, (NV) <vp?

_ (N,/V) m,
T WY VAT

If the subscript ‘1’ refers to the molecule containing the lighter uranium isotope, the
ratio of fluxes is

7 ]
0.7 352 _ 708x10°,

1= 2
J, 993 "V 349
while the ratio of concentrations in the original mixture is
N./ i
W) _ 07 _ 705 % 10°
(NJV)y 993

Since the mass difference is so small, it is clear that the effusion process would have to
be repeated many times to achieve an appreciable separation of the isotopes.




Statistical Thermodynamics Lecture No. 8

Our concern so far has been with the behaviour of perfect gases that are composed of atoms
possessing only translational energy. In this lecture, we consider a perfect gas made up of
diatomic molecules, and we construct a simple mechanical model to represent the behaviour of
such molecules. The basic question of interest to us is how the rotation and vibration of the
molecules contribute to the thermodynamic properties. If the atoms are treated as point masses
m, and my, separated by a distance 7,4, the total energy of the molecule can be written as

e = Impal + Jmy} + O0,) + & (1)

where ep,; is the potential energy due to external forces and ®(r,p) is the potential energy of

separation of the atoms. It is also possible to write the kinetic energy part of this expression in
terms of the centre of mass. The position vector of the centre of mass is defined by

mor, + myr,

R = mg + m,

(2)

and its velocity vector by
mgv, + m,\v

_ b b
V= mg, + m, (3)

By use of simple algebra it is possible to express the sum of the kinetic energies of the
individual atoms in terms of the translational kinetic energy of the molecule as a whole and an
additional contribution to the kinetic energy associated with the relative motion of the atoms:

1, 2,1, 2 _ 1 1My 2
Emava + Embvb = E(ma + mb)VZ + -i-m(va - Vb) . 4)

If 7,5 is the vector whose magnitude is the internuclear distance, the total molecular energy is

£ = —1—M ‘V2

2
where u is the reduced mass. Both the magnitude and direction of this vector are time-
dependent. We can identify a vibrational component of this time-dependence that can be written
as

1 drab 2 (I) 5
+ 5“(—&[-) + (rab) + Epot' ( )

(__dr""’) = id_rﬂ ()
dr vib r b dr '

Assuming that the internuclear separation is constant during the rotational motion, the rotational
component is

drab
(T)rot = 0(('01 + (DZ)’ 7

where ®; and @, are angular velocities in two directions perpendicular to 7. For the total
kinetic energy associated with changes in g, we therefore have

dr dr
1 aby? _ 1 aby2 1 2 2
ST = )" + oH re(o) + @3). (®)

where pro2/2 is the moment of inertia, /. For nonlinear polyatomic molecules there are in
general three moments of inertia and components of the angular velocity.



The potential energy of separation can be developed as a Taylor series about ry:

2
do 1 2d@
@) = O(ry) + (r-ro)(dr),=r0 + 5{r-ry) (dr2 dr=ry Fe

= -g, + %K(r - ro)z, (€)]

where higher terms in the expansion are neglected. In equation 9, £ is the bond energy, and ro
is assumed to be the equilibrium bond length, i.e., the point at which the potential energy is a
minimum (so that its first derivative with respect to r is zero). The potential energy curve is
thus approximated by a parabola. The curvature x of this parabola is known as the force
constant, which is defined as

2
- 4Py 10
k= s, (10)

The assumption that the higher terms in the expansion are negligible is equivalent to the
assumption that the force required to stretch the bond from its equilibrium length is
proportional to the degree of extension. This is called the harmonic approximation. The total
energy of the molecule according to this classical model is therefore

™
]
Nér-d

dr ., 2 2
V2 o+ %I(mf+(o§) + %M(TJ?Q) + %K(r-ro) - £y + Epppe (11)

The contributions of each of these parts of the energy to the thermodynamic properties can be
determined by evaluating the corresponding contributions to the partition function. We observe
that since the contributions to the energy are additive, the molecular partition function is formed
as the product of the partition functions corresponding to each component of the molecular
energy:

(12)

Z = Zypanstroitvibipot

If we assume that the potential energy due to external forces acting on the molecules is zero, the
contribution to the partiticn function is 1. The translational partition function is readily obtained
as before by integrating over all possible values of the components of the centre-of-mass
velocity:

ztrans

_ V 2nkT\3/2
= V@, (13)

0

To determine the rotational factor of the partition function, we have to integrate the Boltzmann
factor for the kinetic energy over all values of the two angular velocity components:

L ff I(of Ico%
oot 25 %
)

zr.-'ot =

(80', JJ 2kT 2kT
S (1 P (0
__ 1 e 12 __ 1 2nkT
= ——(|expl 2kT]dm1)( expl ZkT}dwz) 71 (14)
(8g,) = <o (8,

The quantity go, is inserted to ensure that the partition function is dimensionless, but for the
purposes of the present discussion its actual value turns out to be immaterial.



To determine the vibraticnal factor, we have to integrate the Boltzmann factor for the kinetic
and potential energies of vibration over all possible values of the separation and relative
velocity of the atoms:

_ 1 KUrgp=Tg) Mg,
Lin T E Iexp[ %T 2%T ldr ,dv,,

—0Ro0

oo oo Zz
1 _xr? HVab 1 \Pnkr \/ 2RkT
= A - d = . 15
h—o( exp| 2kT] r)f expl 2kT] V) PRV m (15)
The above analysis shows that each component of the molecular energy that depends on the
square of some coordinate (e.g., a linear or angular velocity, or degree of bond extension) the
partition function will be proportional to the square root of kT. Generally, if the energy of a
molecule is given by

€ =¢ + as (16)

where s is an internal or external coordinate that can vary continuously over an infinite range,
the partition function will always be of the form

oo

2
z =1z Jexp(- %—;,) ds = z',/-’%l. an

—aa

A further important observation is that each such component will contribute 47/2 to the average
molecular energy (i.e., to the internal energy per molecule), irrespective of the value of «. This
result is known as the Equipartition Theorem, because the energy is distributed equally among
all such quadratic degrees of freedom. Returning to our simple classical model for a diatomic
molecule, we see that there are seven coordinates upon which the energy depends quadratically:
three components of the centre-of-mass velocity, two angular velocity components, and the
kinetic and potential energies of vibration. We therefore predict that the internal energy for a
gas of N of these diatomic molecules is

_ n kT _ U, _ Nk
U=N 5 sothat  C,, (T)V o

and €, = Cy + Nk = 20k, as)
In general, the motion of a molecule containing n atoms can be described by three velocity
components and three angular velocity components (two for a linear molecule). The remaining
3n - 6 (or 3n - 5) coordinates required are associated with the normal modes of vibration.
According to the Equipartition Theorem, each translational and rotational degree of freedom
gives rise to &7/2 to the mean molecular energy, and each vibration contributes twice this
amount. In the particular case where n = 2, the predictions of this simple model can be
examined by determining the ratio of the heat capacities. The prediction is y = 9/7 ~ 1.286, but
this value is found to be substantially different from the values for real gases. Data for some

common diatomic molecules at 15%C and 1 atm are as follows:

Gas y=CplCy
H, 1.408

6] 1.400

N, 1.404

o 1.404

Cly 1.34

This discrepancy could not be explained satisfactorily until the advent of the quantum theory of
molecular vibration.



Learning Objectives

Knowledge

8.1.1 State defining formulae for centre of mass, reduced mass, and moment of inertia.
8.1.2 Identify potential and kinetic components of the energy of a diatomic molecule.
Comprehension

8.2.1 Describe the physical significance of the centre of mass.

8.2.2 Explain qualitatively the origin of rotational and vibrational components of the
molecular velocity in terms of the time dependence of the internuclear separation vector.

8.2.3 Describe the physical significance of the harmonic approximation to the internuclear

potential energy function.

8.2.4 Explain why additive contributions to the molecular energy produce multiplicative

factors in the molecular partition function.
Application

8.3.1 Enumerate the mechanical degrees of freedom for a polyatomic molecule.

8.3.2 Assuming the validity of the Equipartition Theorem, estimate the internal energy and

heat capacity ratio for an ideal polyatomic gas.
Analysis

8.4.1 Derive equation 4.

8.4.2 Demonstrate the equivalence of the parabolic potential energy curve and the linear

relation between the force and degree of extension.
8.4.3 Demonstrate the constancy of the curvature for the parabolic potential energy curve.

8.4.4 Prove equation 17 by application of the formula for the Gaussian integral Gg.

8.4.5 Prove that each factor of the partition function corresponding to an energy depending

quadratically on a coordinate contributes k772 to the internal energy.




Statistical Thermodynamics Lecture No. 9

We commenced our study of statistical thermodynamics by observing that although it is in
principle possible to specify exactly the position and momentum of a particle by solving the
equations of motion, the huge numbers of particles present in real systems compel us to adopt a
statistical approach. Our treatment of the translational energy of molecules in perfect gases was
based on the assumption that the molecular velocity and energy can be regarded as
continuously variable, and resulted in predictions that are in good agreement with experiment,
but in the last lecture, we showed that application of the same assumption to molecules
possessing rotational and vibrational energies is not as successful. In this lecture, we show that
the adoption of a quanturn-mechanical treatment of vibration and rotation leads to much better
agreement with experiment.

According to quantum mechanics, the behaviour of a particle of mass m can be determined in
terms of wave functions, which are solutions of Schroedinger's equation:

2
Vi + §1;2_m<s-mw = 0, o))

where E is the total energy (potential plus kinetic), U is the potential energy (as a function of
position), and 4 is Planck’s constant, and the first term on the left-hand side 1s the Laplacian of
v (which is the sum of second partial derivatives of y with respect to the various coordinates).
Two fundamental differences between the classical and quantum treatments can be identified.
The first is that the position of the particle is not described in a deterministic way, but rather in
terms of a probability density function that is obtained from the square of the wave function.
The absolute limit to the accuracy with which we can describe the behaviour of a particle is
expressed by the Heisenberg Uncertainty Principle
h_

ApAx > L @
where Ax and Ap are the uncertainties in position and momentum. The second difference is
that the boundary conditions that must be satisfied by solutions of Schroedinger’s equation
make it possible for the energy E to assume only discrete values. From the point of view of
statistical mechanics, this means that the partition functions will in general involve summations
over these energy states rather than integration over continuous ranges of energy, but as we
shall see, these sums can under some circumstances be accurately approximated by integrals.

The quantum-mechanicai treatment of translation is based on a model called the ‘particle in a
box’. In this model, a particle of mass is m constrained to move within a rectangular region of
space of volume V = abc, within which the potential energy is zero, and outside which the
potential energy is infinite. The solution of the Schroedinger equation for this model leads to
the result that the allowable (kinetic plus potential) energies are

22n22

o 2 , "3
Eﬂg_n?(?+b—+ -3, (3)

where n1, ny and n3 are the quantum numbers for motion in the x, y and z directions. The

partition function is obtained by summing over all possible values of these quantum numbers:
2

zZZZp kTa2 2+—>] @)

n On Gn—

Because A2 is so small, the energy levels corresponding to consecutive values of the #s are so
closely spaced that the sums can be replaccd with negligible error, by integrals:

((f. +n§+n2d d d
z ‘”‘J‘ Ska ? -—~—)]n n,dn,

000




ny h h n; h
= (0 expl- Lo ]dnl)( fexpl- —cr ]dnz)( expl- —>5Jdny)

_ (2Jtka) V.

h3

(3)
The internal energy is therefore

U = Nkf(alnz - % (6)

which is seen to be exactly the same as that predicted by the Equipartition Theorem (347/2 per
translational degree of freedom). We also see that the partition function becomes equal to that
predicted by the classical model if we set

h
hy = o 7

But from equation 2, this quantity (apart from a trivial factor of 4x) represents the minimum
value of the product of the uncertainties in position and velocity. Thus, from the point of view
of statistical mechanics, the significance of the Uncertainty Principle is that it defines the
smallest possible volume element of phase space in which we can say that a particle is located.
In other words, we must regard the position-momentum phase space for a single particle as a
collection of cells with a volume A, rather than as being completely continuous.

Solution of the Schroedinger equation for a rotating diatomic molecule leads to the result that

the allowable energy levels are given by
2

- h
E__ = BIJ+1), where B =-"— 8)
rot 81[2[

where B is the rotational constant, [ is the (single) moment of inertia and J = 0,1,2,...is the
rotational quantum number. (The rotational constant defined in equation 8 is expressed in J,
and should be distinguished from the quantity determined from spectroscopy, which is usually
expressed in wavenumber units. The spectroscopic rotational constant must be multiplied by Ac
to convert it to J). A further important point is that there are 27 + 1 quantum states of the same
energy for each value of J (i.e. the degeneracy is equal to 2J + 1); this degeneracy can be
removed by application of a strong electric field (the Stark effect from microwave
spectrosc’ ). We must also take account of the fact that for symmetrical molecules, rotation
produces .. .clear configurations that are apparently indistinguishable. The corresponding
partition function can therefore be written

o = ST + Dexpl- 20, ©)
J=0

where o is the symmetry number, which is either 1 (for a heteronuclear) or two (for a
homonuclear) diatomic rnolecule. For sufficiently high temperatures, or for molecules with
very small values of B (i.e., large moments of inertia), this sum can also be approximated by
an integral that can be conveniently evaluated by observing that the derivative of J(J + 1) with
respecttoJis 2J + 1:

2, = 1I(y+ 1y expl-20 + Dias = £L (10)

The rotational contribution to the internal energy is again seen to be in agreement with that
obtained from the Equipartition Theorem, since it is formally equivalent to the contribution of
two factors of £T/2 to the internal energy.



The simple harmonic oscillator model introduced in the last lecture can also be treated quantum-
mechanically. This analysis leads to the result that the allowed vibrational energies are

- 1
E, = 0+ D, (an

LY

where v is the vibrational frequency and v is the vibrational quantum number. The vibrational
partition function is

1
(v + Dhv S
_ : 2 _ __hv _hvy
Fuib = Z;f"p[ i) = o 2kT)§exP( kT
hv
exp(- 57
= _2’%\)_ (12)

1 - CXp(—ﬁ

where the last step follows from the formula for the sum of a geometrical series. The internal
energy of a gas of N particles is therefore

dlnz .

U. = NkT2( nzwb) — Nhv + Nhv ] (13)
vib aT v 2 hv _

expCp) - 1

This looks very different from what we would expect from the £T per molecule that results
from the Equipartition Theorem, because of both the presence of the exponential function and
the constant term Nhv/2. The classical and quantum treatments agree only in the limit of high
temperatures, where the exponential in the denominator of the last term in equation 13 can be
approximated by its linear expansion:

My . NV __ - i, (14)
exp(p) - 1 1+ -

As an example, consider the HCl molecule, for which the vibrational frequency is 8.65 x 1013
Hz. At 300 K, we have

av _ (6.63x 107 Ts)x (8.65 x 107 s°)
*T 23
(1.38 x 10 ™ JK ") x (300 K)
from which it follows that the ratio of the populations of the v =1 and v = 0 states is

- 13.8, (15)

N
v=1 _ _ hv = -6
N,,:Q = exp( T 1.02 x 10 . 16)

The spacing between the consecutive energy levels is equal to kT when

(6.63 x 10°% J 5) % (8.65 x 10" s1)

(138 x 102 7K

from which it is clear that the molecule will disintegrate long before the approximation used in
equation 14 is justified (the error in approximating exp x by 1 + x is about 0.5% if x = 0.1). It
is also clear that the Equipartition Theorem overestimates the vibrational contribution to internal
energy, since the vast majority of molecules are in the lowest vibrational state. Of course, the
extent of this overestimation depends on the value of v, which is a direct measure of the
strength of a bond: the higher the frequency, the stronger the bond. For a weakly-bound
molecule like iodine, for which v = 6.40 x 1012 Hz, Av/k = 307 K, so that at 300 K the ratio of
populations corresponding to equation 15 is exp(-307/300) = 0.359.

T =

= 4156 X, a7




Learning Objectives

Knowledge

9.1.1 State the Heisenberg Uncertainty Principle.

9.1.2 State the expressions for the translational, rotational and vibrational energies as
deduced from quantum-mechanics (equations 3, 8 and 11).

Comprehension

9.2.1 Describe the main differences between quantum-mechanical and classical-mechanical
systems.

9.2.2 Distinguish between the indeterminacy implied in statistical-mechanical models and that
inherent in quantum-mechanical models.

9.2.3 Relate the presence of A in the particle-in-a-box partition function to the Heisenberg
Uncertainty Principle and the discreteness of phase space.

9.2.4 Identify the assumptions inherent in the calculation of the rotational partition function
according to equation 10,

Application

Calculate, for a diatomic rnolecule

9.3.1
9.3.2

9.3.3
9.34

the quantum-mechanical translational partition function.

the rotational partition function from equation 10, given the value of B determined,
e.g., from microwave spectroscopy.

the vibrational partition function from a vibrational frequency.

the populations of rotational and vibrational quantum states.

Analysis

9.4.1

942

Demonstrate the equality of the internal energy determined from the quantum-
mechanical and classical partition functions for rotation and translation.

Derive equations 5, 10 and 12.




Statistical Thermodynamics Lecture No. 10

We saw in the last lecture how statistical mechanics can be applied when the motion of
molecules is treated quantum-mechanically, and in particular how the quantum treatment of
molecular vibration allows us to account for the failure of the Equipartition Theorem. In this
lecture we first consider first some characteristics of the quantum theory of molecular
translation that lead to a different perspective on the physical significance of the partition
function. We then procezd to discuss some of the more practical aspects of how partition
functions and the associared average energy contributions can be calculated for the rotational
and vibrational degrees of freedom.

The translational partition function for a quantum gas was shown to be proportional to the
volume of the container. We can rewrite this in a rather more compact way as follows:

_ oy v O

trans 3 3°

h A
where

A= _.........h'_.
2nmkT

is known as the thermal De Broglie wavelength of the particle. It is clear not only that this
wavelength decreases with increasing temperature, so that the partition function increases, but
that the translational contribution to the thermodynamic properties of the gas depends on the
size of the container in relation to the cube of the thermal wavelength. Since the mass of a
typical molecule is of the order of 10-26 kg, a corresponding order of magnitude estimate for A
at 300 K 1s

o (6.63 x 1024 J 5)
¥ 2rmkT -JZR x (102° kg) x (1.38 x 102 YK ™) x (300 K)

=41 pm,

which is seen to be considerably smaller than the molecule itself. When the partition function is
determined according to equation 1, enormous numbers are obtained.

We can give a physical interpretation of this behaviour of the translational partition function by
observing that increasing the volume occupied by a gas increases the number of accessible
microstates in two ways. We are obviously providing many more possible spatial arrangements
of the molecules. From the expression for the particle-in-a-box energy levels, viz.
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it is also clear that when the dimensions a, b and ¢ of the box are increased from atomic to
macroscopic values (from 0.1 nm to, say, 0.1 m) the spacing between energy levels
corresponding to consecutive values of the quantum numbers greatly decreases. Thus, we are
also increasing the number of accessible momentum states. For example, consider a gas
confined in a cavity of diameter 1 nm (which one might find in a gas-liquid dispersion or
microporous solid). The separation between the energy levels is of the order of

6.63 x 10°* 7 5)°

. = 549X 1027 = 1.33x 10 &T at 300 K.
8 x (107 kg) > (10 "'m)




When the dimension of the container is increased to 0.1 m, this characteristic energy is

decreased by a factor of 1016, becoming so minute with respect to kT as to be truly negligible,
so that the approximation of the partition function by an integral is completely justified. This
example shows that the numerical value of a partition function is a quantitative measure of the
volume of phase space accessible to a particle in the system.

The thermodynamic properties of the gas as a whole are determined by considering the range of
accessible configurations in relation to the number of particles in the system. In gases under
usual temperatures and pressures (~ 300 K and 1 atm), the number of accessible quantum
states is very large relative to the number of particles. Under these conditions, the probability
that the same quantum staie is occupied by more than one molecule is completely negligible: we
refer to such a gas as being in the nondegenerate limit. An important example of a system for
which degeneracy effects are important is liquid helium, which possesses many fascinating and
unusual properties. These are, however, beyond the scope of this course.

Similar observations on rthe physical significance of the partition function also apply to the
rotational degrees of freedom. As we have seen, the position of a diatomic molecule in the
rotational phase space is specified by the quantum number J, with each quantum state having a
degeneracy of 2J + 1. The partition function in the high-temperature limit is given by

- kT _ T

e =58 T @,

rot

where 0,, = %B_ (3)

is the characteristic rotational temperature which, from the definition of rotational constant B,
is inversely proportional to the moment of inertia of the molecule. A bond length of about 100

pm and molecular mass of about 10-26 kg produce a moment of inertia of the order of 10-46 kg
m2, which gives a typical rotational temperature of

o -B_ (6.63 x 107 J 5)°
872 x (107 kg m2) x (138 x 10 2T K™

rot

= 4K,

=%

assuming that o = 1. The partition function is seen to increase with increasing temperature,
again indicating increased accessibility of the quantum states, but we must remember that the
accuracy of the integration used to obtain equation 3 also depends on the value of 7/8,,. This
limitation of accuracy is likely to be important for the hydrogen molecule, which is
exceptionally light. By application of a result known as the Euler-Maclaurin Summation
Formula, it is possible to derive a more accurate expression for the partition function sum that
has the integral as a first approximation:

£

(27 + Dexpl-xJ(J + 1)] =
J=0

x-2 x2—3x - erot
12 + 730 +.y X = 2

1 1
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For small values of x (less than about 0.01), the sum converges very slowly, but the accuracy
of the approximation on the right-hand side is good. Values of the series for larger values of x
can be readily determined by direct evaluation of the sum, and are tabulated in an Appendix. As
an example of the use of these results, let us calculate the rotational partition function for the
hydrogen fluoride molecule at 301.5 K, given that the rotational constant is

B = 209560 cm’!, B = hcB = (66256 x 107 T 5) x (2.99793 x 10°m s°)
x (2095.60 m™!y = 4.1625 x 102,




so that

22
oB _ 1x(41625x107°)) _
erot = k - = 30.15 K.

(13806 x 102 J K'Y

At the given temperature, we have 7/8,, = 0.1, so we find from the table that z,,; = 9.4317.

Use of the integral approximation for this molecule would give a value of exactly 10, which is
about 6% too large. The probable fraction of molecules in each rotational energy level is

(2J + 1) exp(- %’,ﬂju +1))
, (3)

N
P. =2 =
N

J 4

rot

The exponential factor obviously decreases with increasing J, but because this is multiplied by
the degeneracy of 27 + 1, we expect this probability to go through a maximum for some value
of J. This gives a distribution of the form shown in Figure 1.
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Figure 1: Distribution among rotational energy states for HF at 301 5 K.




The distribution of molecules among the vibrational energy states can also be conveniently
expressed in terms of a characteristic temperature. For a molecule with a single vibration of

frequency v, the partition function is

(v + l)h\r exp(- %)
Zup = ECXP[' ki?‘ 1= 21(:3 ’ ©
v=0 - ___vib
where
_hv
vib k

Values of the vibrational temperatures are much higher than rotational temperatures: even for
weakly-bound molecules, 8,; is several hundred K, and for most of the common diatomic

molecules it is several thousand K. As a result, we can expect rather small values for the
vibrational partition function factors. For example, the vibrational frequency of HF is 4139.04

cm-1, so that

v = Ve = (413904 m) x (2.99793 x 10° m s!) = 1.24086 x 10™* 57!,
and

34 14
_ ﬁky_ _ (66256 x 10~ Ts) x (1.24086 x 107 s — 5955 K.

(13806 x 102 TK'H

vib

At 301.5 K, the denominator of the vibrational partition function will be negligibly different
from 1, and

e_.
~ o _viby _ . 9955 o _ s
Z,. = eXp( T ) = exp( T 301.5) 4.894 x 10",

This small value corresponds to a very small volume of the vibrational phase space being
available to the molecules at this temperature. In fact, the overwhelming majority of the
molecules will be in the v = 0 state. The occupation probabilities of the higher vibrational states
are as follows:

v P,

1 2.643 x 109
2 6.987 x 10-18
3 1.847 x 10)-26

Thus, only about 3 molecules per billion will be in the first excited state, about 7 per billion
billion in the second excited state, and not even one molecule in a mole would be expected in
the third state.

The calculations presented here have all been based on the assumption that the various
components of the molecular energy are independent and additive, thus giving rise to factors of
the partition function. This additivity assumption is known as the Born-Oppenheimer
approximation, and is not strictly correct. In particular, there is appreciable interaction between
rotational and vibrational degrees of freedom, resulting in a dependence of the rotational
constant on the vibrational state. It should also be observed that the expressions for the energy
levels are themselves approximations: the most accurate estimates of the thermodynamic
properties can be derived from spectroscopically-determined energy levels.




Learning Objectives

Knowledge

10.1.1 Define the thermal wavelength of a quantum gas molecule.

Comprehension

10.2.1 Describe the behaviour of the thermal wavelength as a function of temperature.
10.2.2 Interpret the partition function as a measure of the accessible phase-space volume.

10.2.3 Describe the effect of changing the linear dimensions of the gas container on the
configurations available to the gas molecules.

Application

Calculate

10.3.1 the thermal wavelength of a particle.

10.3.2 the rotational and vibrational temperatures of molecules from spectroscopic data.
10.3.3 the rotational and vibrational entropy and internal energy.

Analysis

10.4.1 Demonstrate the equivalence between characteristic temperature and separation between
energy levels.

Rotational Partition Function

R . I+ 1) 6,
By = D@1+ De ,  x= -
7=0

T

X 0.01 0,02 0.03 0.04 0.05 0.06 0.07 0.08 0,09
0.0 100.3340 50.3347 33.6687 25.3360 20.3367 17.0040 14.6238 12.8387 11.4505
0.1 9.4317 8.6749 8.0345 7.4858 7.0103 6.5943 6.2274 5.9013 5.6096
0.2 5.1098 4.8941 4.6972 4.5168 4.3508 4.19877 4,0560 3.9245 3.8021
0.3 3.5811 3.4811 3.3871 3.2988 3.2155 3.13e69 3.0626 2.9923 2.9256
0.4 Z2.8021 2.7448 2.6902 2.6382 2.5885 2.5410 2.4955 2.4520 2.4103
0.5 2.3319 2.2951 2.2596 2.2255 2.1927 2.1611 2.13086 2.1012 2.0729
0.6 Z2.0180 1.9935 1.9688 1.2448 1.9217 1.8693 1.8776 1.8565 1.8361
0.7 1.7972 1.7785 1.7604 1.7429 1.7258 1.7092 1,.6931 1.6774 1.6622
0.8 1.6329 1.6188 1.6051 1.5918 1.5788 1.5661 1.5538 1.5418 1.5301
0.9 1.5075 1.49%66 1.4860 1.4756 1.4655 1.4556 1.4460 1.4366 1,4274
1.0 1.4097 1.4011 1.3927 1.3846 1.3766 1.3688 1.3611 1.3537 1.3464
1.1 1.3322 1.3254 1.3187 1.3122 1.3058 1.2996 1.2935 1.2875 1.2816
1.2 1.2703 1.2648 1.2594 1.2542 1.2490 1.2440 1.2391 1.2342 1.2295
1.3 1.2203 1.2159 1.211s8 1.2073 1.2031 1.1991 1.1951 1.1911 1.1873
1.4 1.1799 1.1763 1.1727 1.16893 1.1659 1.18626 1.1593 1.1562 1.1530




Statistical Thermodynamics Lecture No. 11

In our treatment so far we have been concerned with systems of weakly interacting particles,
i.e., those whose only interactions are through the kinetic energy exchanged in collisions. This
level of treatment is quite adequate (and is indeed used) in the calculation of ideal-gas state
thermodynamic quantities for gases from spectroscopic data: results of such calculations may
be found in the JANAF Thermochemical Tables. On the other hand, the assumption of ideal-
gas behaviour is obviously quite useless if we want to understand the volumetric properties of
gases (as expressed by the equation of state).

To develop a theoretical tnodel of imperfect gases, we first have to consider how we define the
microstates of the system. In our work so far, we have characterised these microstates in terms
of the coordinates of each molecule in a phase space consisting of the position and velocity
coordinates. In a gas of interacting particles, the strength of the interactions obviously depends
on the positions of the molecules with respect to each other. The thermodynamic functions are
determined, in the usual way, by considering the contribution to the partition function of all
possible values of the momentum of the particles and their positions with respect to each other.
The way in which this can be done involves counting up the contributions of clusters of two,
three,..., interacting molecules, averaging the Boltzmann factors of the energy of these clusters
over all possible values of the separation distances and relative configurations.

The starting point in the analysis is the assumption that the total configurational energy of the
gas can be written in the form

N N
E=Ye + Z(D(rij), , (1)

i=1 i>]
where g;is the energy of molecule i arising from translation, internal degrees of freedom and

external fields, and the summation of pairwise interaction potentials is over all distinct pairs
(e.g., pair 21 is counted but not 12). The partition function for the gas is obtained by
integrating exp(-E/kT) over all accessible position and velocity coordinates of the molecules:

z=22,. @)

where

and Zy is the partition function corresponding to the translational, rotational and vibrational
degrees of freedom. We can’t evaluate the integral in Z,,,rin closed form but if the interaction

potential energy is small with respect to AT, we can develop a series of approximations to it. To
do this we observe that Boltzmann factor for the sum of the interaction energies can be written

as a product of terms:
N
2.06) or)

expl- 22— = [ Jexst- 201 = [ T +£5, )

where




is called a Mayer f-functicn. We observe that if the potential energy is small with respect to &7,
the exponential will be close to 1 and the Mayer f-function much smaller than 1. The product of
J-functions can be expanded as follows: -

N N
H[l tfl =1+ E f; + other terms 4

i>j i>f

where the "other terms” involve sums of products of two, three,... f~functions, and correspond
physically to interactions involving three, four,... molecules simultaneously. If the interactions
are fairly weak, the f~functions are small, and we can regard the other terms as negligible and
terminate the expansion after the second term. The configurational part of the partition function
can therefore be approximated by

Zos = JJ[1+Zf]dr dr,,

i>j

=V 4 Zj Jf dr.. )

i>]
We can evaluate each term in this sum by observing that each particular f~function depends
only on the distance ry; = Ir; - rjl, and is independent of the positions of all other molecules. (We

also assume that the interaction potential between molecules i and j is spherically symmetric,
i.e., does not depend on the relative orientation of the molecules.) Integration with respect to
each of the other rs provides a factor of V, so that

[ Jiaryany = VY2 fpar pdrar, (©)

We can evaluate this integral either by specifying r; and r; separately with respect to some
origin, or by specifying the position of one molecule (r; say), and the position of the other
molecule i rij =r; - rj with respect to it. Integrating over the positions of both molecules

simultaneously is obviously equivalent to integrating over the position of one molecule and the
relative position of the other, so we can write

drdr. = dr. dr, )
i g

Integration over r; produces another factor of V:

AR J.f(r)drdr = vV J.f(r)d ®)

vy

We now observe that this integral will have the same value for each of the N(N - 1)/2
distinguishable pairs of indices i and j in the summation. Since for large N, NV - 1)/2 ~ N2/2,
the approximate partition function can be written in the form:

O(r)

~ v - N”(T)] where  b(T) = %j(i e Mg (9

conf -
When transformed to polar coordinates, dr = 4nr2dr, so that the integral b is

o0 o)
W) = 2nf(1 - e T2y (10)
0



It is possible to show that a more accurate approXimation is

_ Nb(T) N
Z,y = V'L - 2220 an

The simplest justification of this expression is that the Helmholtz function A = -kT In Z must be
an extensive quantity, i.e., the configurational factor of the partition function must be equal to
the Nth power of some cuantity. This condition is clearly satisfied by equation 11, and the
square brackets in equation 9 can be recognised as the first two terms in the expansion.
Equation 11 can be more rigorously justified by the observation that at low densities the
dominant contribution to the expansion of products of f - functions comes from products where
the factors contain no cornmon indices. (For the details, which are intricate and rather tedious,
see N. Davidson, ‘Statistical Thermodynamics’, New York: McGraw-Hill (1962)). The
thermodynamic properties of the gas can be calculated from the total partition function

_ _ Nb(T) N

Z=27,, =2V - =20 (12)
In particular we are interested in the pressure:
_ r9InZ _ d _ Nu(T)
p = kT A kTaV[Nan +1InZ, + NIn(l — Y]
2

5 0 _Nb(T)
-~ kTév[N InVv + anO —V 1, (13)

where we have used the approximation In(1 - Nb/V) ~ -Nb/V, which is valid for low densities.
We therefore obtain

_ NkT , (N2 _ NkT NiT
p==y ¢ (V)ka(T) v n+ Vv ] (14)

The quantity b(T) is of the order of the volume of a molecule. Introducing the number of
moles, n, we obtain the two-term virial equation of state:

_ nRT n
p =280+ Zamy, (15)
where B is the second virial coefficient defined by
. 00
B() = Npb(@) = 2nt, [ - F)Par. (16)
0

Equation 15 is widely used to calculate the thermodynamic properties of slightly imperfect
gases, with emphasis on the word ‘slightly’: we should remember that the whole of the above
analysis is based on the assumption that the *other terms’ in equation 4 are negligible. It is also
worth remarking that we assumed that the potential is spherically symmetric (i.e., does not
allow for any dependence on the mutual orientations of the interacting molecules), which is
likely to limit the applicability of equation 16 to atoms and almost spherical molecules; it is
possible to generalise it to angle-dependent potentials but we do not pursue this refinement
here. In general, numerical methods have to be used to evaluate the integral, but for some
important simple interaction models, analytical results can be obtained.

The virial equation that we have obtained above is the simplest form of a more general equation
of state that has the form of a power series in the number density N/V. The second,
third,...coefficients in this expansion and correspond physically to contributions of interactions
between groups of three, four,....molecules simultaneously. These coefficients can also be
related in a general way to the pairwise potential energy of interaction, but they are exceedingly
complicated, and difficult to evaluate even by computer.




Learning Objectives

Knowledge

11.1.1 State the equation for the total energy of a gas, including contributions from
kinetic/internal degrees of freedom and interaction potential energy.

Comprehension
11.2.1 Describe how the microstates in an imperfect gas are characterised.

11.2.2 Describe how the assumption of pairwise additivity of intermolecular forces leads to
equation 1.

11.2.3 Explain the origin of equation 3.

11.2.4 Identify the essential property of the Mayer f-functions and the assumptions that allow
equation 4 to be obtained from equation 3.

11.2.5 Give a physical justification for the transformation of coordinates expressed by
equation 7.

Application

11.3.1 Calculate the Mayer f~function, given the pairwise potential energy as a function of 7.
Analysis

11.4.1 Justify equations 5, 8, 9, and 10.

11.4.2 Explain how equation 11 follows from equation 9 in terms of the properties of the
Helmholtz function.




Statistical Thermodynamics Lecture No. 12

We showed in the last lecture how the assumptions that the total interaction potential energy in
a real gas can be regarded as the sum of pairwise interactions, and that these interactions are
small with respect to kT can be used to produce an expression for the second virial coefficient.
Apart from its actual value, which obviously determines the magnitude of deviations from
ideal-gas behaviour, the most important property of the second virial coefficient is its
dependence on the temperature. In this lecture we consider the calculation of the second virial
coefficient corresponding to various simple models of intermolecular interaction.

The simplest possible model for interactions is the hard-sphere model, which assumes that the
potential energy of repulsion between molecules is either zero (if the molecules are not in
contact) or infinite (if they are in contact) - see Figure 1. The crucial parameter in this model is
the distance of closest approach r; between the centres of the atoms or spherical molecules,

which is obviously equal to twice the molecular radius. Corresponding values of the potential
and the Mayer f-function for r > r and r < r;. are are follows:

r<r, ®=ow fir= exp(-%)-l = -1
r>or d =0 fin = 0 (D
The second virial coefficient is therefore
B(T) ¢ 3 Anr
=2 = -Zn_[ﬂr)ﬂdr = ZnJ‘rzdr = \ (2)
N A J J 3

which is seen to be equal to four times the molar volume, and temperature-independent. The
fact that the virial coefficient is equal to four times the molecular volume rather than the
molecular volume itself can readily be understood by considering the geometry of two spheres
in contact, as shown in Figure 2. It is clear from this that the distance of closest approach
defines a region of space around each molecule that cannot be occupied by other molecules.
The volume of this spherical region is called the excluded volume.

Q (=]
A
l |
0
re r ro = 2r

Figure 1: Hard-Sphere Potential Figure 2: Definition of the Excluded Volume



In general, the sign of the virial coefficient can be related to the relative importance of attractive
and repulsive regions of the potential function, and the behaviour of the f~function: if the
potential energy is positive (as for a repulsive potential), f is negative, while if it is negarive
(attractive potential), fis positive. The temperature-independence of the virial coefficient
according to the hard-sphere model is a major limitation to the usefulness of this particular
model of interactions, since it is well known that the second virial coefficient depends quite
strongly on temperature. A more realistic model that includes a constant attractive potential
energy operating at intermediate distances as well as a distance of closest approach is the
square-well potential. The corresponding values of the potential and the f-function for this
model are:

r<r, ®= o flir)= cxP(-—) 1 = -1
r<r<r, -£ cxp(—) 1
r>or, 0 0 3

so that the second virial coefficient is

B(T) 211:Jr2dr ] 2n(e"T I)Irzdr

16mr v
= = - A8 M- 007 - @)
The first term on the right-hand side is clearly the hard-sphere virial coefficient, to which B
tends as the temperature increases {i.e., as the exponential term becomes close to 1). The
behaviour of this expression as a function of temperature can be visualised more clearly by
considering the quantity

( H
3B(T) 1- -1 -1 5
16m3mNA N )[( ) ] ©

which is a reduced virial coefficient. This is shown as a function of &/kT in Figure 3, and is
seen to depend strongly on the cube of the ratio of the range of the potential and the molecular
radius. This illustrates the physical significance of the virial coefficient as a measure of the
volume around a moleculz in which intermolecular forces are expected to be significant.
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Figure 3: Reduced virial coefficient for the square-well model.



We observe that since the square-well model has three parameters, viz., the molecular radius,
the range of the attractive force and the depth of the potential well, we required several curves
to represent the effect of all these parameters on the virial coefficient. For a two-parameter
potential function, the same choice of dimensionless variables can be used for the independent
and dependent variables, but only one curve is required - in other words, we can express the
dimensionless second virial coefficient in terms of one parameter (the reduced energy e/kT).
The expression for this dimensionless virial coefficient can be derived for a general potential
function that involves an energy parameter € and a length parameter (usually the hard-sphere
diameter) r;, by defining the dimensionless quantities

_r _ @ _ kT
R—r—s ox = 2 T* =1L (6)
We then have
( D*e\1p2
B(T) = 2rN,r} J[l - exp(- IR dR (7)
0
which can be written as
oo d*(R)
BT = 8D _ 3‘[{1 -e T |R%R, )
N,y

where B* is the second virial coefficient divided by the excluded volume per mole, vy:

27N,
— AS
vy = A% ©
Not only can the second virial coefficient be represented as a function of the single parameter
T*, but we can also see that all gases obey the same two-term viral equation of state:

* B*y
p = RT[1 + B] _ RT*(elk) 1+ 0
v v vy v¥y
0 4]
or
PV, T B*
* = = 4 D 0
P = R = v it T (10)

In our earlier discussion of the thermodynamics of nonideal gases, we found that for a two-
parameter empirical cubic equation of state (such as the van der Waals equation), it was
possible to relate the parameters to the critical constants of the gas and to show that all gases
should obey the same equation of state in terms of the reduced state variables defined in terms
of these critical constants. No assumptions about moelecular interactions were required to obtain
this result. The great significance of equation 10 is that it demonstrates that the principle of
corresponding states also follows from the assumption of a two-parameter function to describe
the pairwise potential energy of interaction as a function of intermolecular distance.

While this result is interesting in that it provides a common basis for comparing predictions of
nonideal effects in different gases, we should not forget the rather drastic assumptions that
were required in order to obtain the virial equation in the form used here. In particular, it is
quite unrealistic to expect interactions between asymmetric molecules to be described
satisfactorily by a spherically-symmetric two-parameter potential. Although as we mentioned
earlier, it is possible to generalise the virial coefficient integral to deal with angle-dependent
potentials, the currently-accepted interaction models are capable of accounting for the behaviour
of only the simplest molecules.



The most successful and widely-used of the simple two-parameter potentials is that proposed
by Lennard-Jones:

@ =4[ D" - O, (1

where £ and ¢ are energy and distance parameters, respectively. The two terms in this
expression predict a strong (but not infinitely strong) repulsive force that operates at short
ranges, and an attractive force that varies more slowly with distance. (Physically, such an
inverse sixth-power interaction is expected to arise from dispersion forces.) The reduced
second virial coefficient for this model can be determined from equation 8 with rg =g,

Brany = 220D g x = KL (12)
27N, o
and can be shown to be
j+-;— 2j-1
_ 2 J - 1
B*(T*) = - 2 a7 I(: 2 ) ROTHTY 13)
]:

where I is the gamma function:

I'(x) = Jt" et ds..
0

This virial coefficient is tabulated in an Appendix as a function of T*. From this table it is
evident that the virial coefficient is negative at low temperatures, indicating the dominance of
the attractive term under such conditions. At high temperatures, it is not only positive, but
passes through a rather poorly-defined maximum. Values of the Lennard-Jones parameters
have been determined for many gases by fitting the equation to the experimental variation of the
virial coefficient with temperature. Some representative values are as follows (J.O.
Hirschfelder, C.F. Curtiss, and R.F. Bird, “Molecular Theory of Gases and Liquids”, New
York: Wiley (1954), p. 165):

Gas (e/k)/K o/A vo/cm3 mol-1
Ne 34.9 2.78 27.10
Ar 119.8 3.405 49.80
Kr 171 3.60 58.86
N, 95.05 3.698 63.78
0, 118 3.46 52.26
CH4 148.2 3.817 70.16
CO, 189 4.486 113.9

Another potential that has proved useful is the Sutherland potential, which combines a hard-
sphere repulsive potential with an inverse-power attraction. Thus:

r <o D = e

r>oc @=-%£-= €@, where &=L, (14)
r r o’

where ¢ and y are constants. The second form of the inverse-power potential allows this
function to be identified as the limiting form of the Lennard-Jones function in which the
exponent of 12 in the first (repulsive) term is replaced by infinity. The second virial coefficient
according to this model is




oo
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B(D) = n A&[[exp(rykT) 1 2dr (15)
or in dimensionless form
w 1
B*(T*) = ﬂ; =1 - J(CRYT* - l)deR. (16)
2nN Ry ;

This integral can be readily evaluated by expanding the exponential in a power series and
integrating term-by-term:

Dy

BXT*) = | - 32%, where  T* = "‘?T a7
oLty - 3T¥

The case where the exponent ¥y = 6 is of particular importance, since as observed above, this is
expected to result from dispersion forces. The reduced virial coefficient for this case is also
tabulated as a function of T*. The Sutherland model is a member of a class of potential
functions known as hard-core potentials, which are of interest in that they can be related to the
van der Waals equation of state. To see how this might be done, we observe that the limiting
form of the Mayer f~-function when the interaction potential is much less than T, viz.:

= LD .. @D
f=expC20 - 1=-20 (18)
gives rise to a corresponding approximation for B:
2N, 6> 28N, ¢
_ A A
B = A+ T Jd)(r) Pdr. (19)
The van der Waals equation of state
RT a
= - = 20
P="7 2 (20)

can be approximated by a two-term virial equation if the molar volume v is much less than b:
.. RT by a _ RT __a,1
p=rll+gl- S =8l vo-on @1

The virial coefficient in this equation is identical to that given by equation 19 if we set

27N, G° 2n
=—A4 and --% =

3 T k

I
A J@(r) 2dr. 22)

Transformation to the dimensionless variables R = r/G and ®* = /e allows the expression for
a to be reduced further to

oo

4= N jd)*(R) R*dR. (23)
1

Although this connexion between the virial equation and the van der Waals equation is
interesting, it should be remembered that the two equations can be regarded as equivalent only
in the limit of low densities. From the practical point of view, the great advantage of the van
der Waals equation is thar it is capable of predicting vapour-liquid equilibrium, while the two-
term virial equation is not.



Learning Objectives
Knowledge

12.1.1 Describe the r-dependence of the hard-sphere, square-well, Lennard-Jones and
Sutherland potentials.

Comprehension

12.2.1 Describe qualitatively the behaviour of the Mayer f-function according to the above
potential models.

12.2.2 Relate the sign of the virial coefficient to the behaviour of the for potentials that are
completely repulsive or completely attractive.

12.2.3 Describe qualitatively the variation of the reduced second virial coefficient as a function
of reduced temperature, for each of the potential models.

Application

12.3.1 Calculate values of the Mayer f~function as a function of distance for a potential
function given in either dimensioned or dimensionless form.

12.3.2 Determine second virial coefficients of actual gases from the tabulations of reduced
virial coefficients and the values of the relevant parameters.

Analysis

12.4.1 Demonstrate the relation between the excluded volume and molecular volume for the
hard-sphere model.

12.4.2 Derive the expression for the reduced second virial coefficient according to a two-
parameter potential function.

12.4.3 Derive the principle of corresponding states from the general form of the second virial
coefficient for a two-parameter potential function.

12.4.4 Identify the approximations made in the identification of the van der Waals parameters
in terms of the virial coefficient for a hard-core potential function.



Reduced Second Virial Coefficient for the Lennard-Jones 6-12 Potential

Calculated according to the analytical equation given by Hirschfelder et al., op. cit., p.163:

B(T) 2 % _2i-1 1 kT
B¥(T*) = —— = - — I ) . , T* = ==,
Vo “~ 4;1 4 T*(21+1)/4 €

B*{0.10)= -9800.128 B*{0.20)= -110.5778

T* 0.00 0.10 2.20 0.30 0.40 0.50 0.60 .70 0.80 0.90
0.0 -27.8806-13.7988 -8.7202 -6.1980 -4,7100 -3.7342 -3.0471
1.0 -2.5381 -2.1464 -1.3359 -1.5841 -1.3758 -1.2009 -1.0519 -0.9%236 -0.8120 -0.,7141
2.0 -0.6276 =-0.5506 —0.49827 -0.4197 -0.3636 -0.3126 -0.2661 -0.2236 -0,1845 -0,1485
3.0 -0.1152 -0.0844 -0.0558 -0.0291 -0.0043 0.0190 0.0407 0.0611 0.0803 0.0984
4.0 0.1154 0.1315 0.1467 0.1611 0.1747 0.1876 0.1%9% 0.21le 0.2227 0.2333
5.0 0.2433 0.2530 0.2622 0.2709 0.27%4 0.2874 00,2951 06,3025 10,3096 0.3164
6.0 0.3229 0,3292 0.3352 0.3410 0.3466 0.3520 0.3572 0.3621 0.3670 0.3716
7.0 0.3761 0.3804 0.3846 0.3886 0.3925 0.3963 0.4000 0.4035 0.4069 0.4102
8.0 0,4134 0.4165 0.419%6 0.4225 0.4253 0.4280 0.4307 0.4333 0.4358 0.4382
9.0 0.4406 0.4429 0.42451 0.4473 0.449%4 0.4514 0.4534 0.4554 0.4573 0.4591

10.0 0.4609 0.4626 0,1643 0.4659 0.4675 0.4691 0.4706 0.4721 0.4735 0.4749
11.0 0.4763 0.4776 0.4789 0.4802 0.4814 0.4826 0.4838 0.485C 0.4861 0.4872
12.0 0.4882 0.4B93 90,4903 10,4913 0.4922 0.4932 0.4921 0.4950 0.4958 0.4967
13.0 0.4975 0©.4983 0,49%1 0.4999 0.50C7 0.5014 ©.5021 0.5028 0.5035 0.5042
14.0 10,5048 0.5055 0.5061 0.5067 0.5073 0.5079 0.5084 0.5090 0.5095 0.5101
15.0 ©.5106 0.53111 0,3116 0.5121 0.5125 0.5130 0.5134 0,5139 0,5143 0.5147
le.0 0.5151 0.5155 0.5159 0.5163 0©.5167 0.,5170 0.5174 0.5177 0.5181 0.5184
17.0 0.5187 ¢©.5190 0.5193 0.5196 ©.5199 10,5202 0.5205 0.5208 0.5210 0.5213
18.0 0,5215 ¢.,5218 0.5220 0.5222 0,5225 0.5227 0.5229 0.5231 0.5233 0.5235
1%.0 0.5237 0.5239 0.3241 0.,5243 0.5244 0.,5246 0.5248 0.5249 0.5251 0.5252
20.0 0.5254 0.5255 0.3257 0.5258 0.5239 0.5260 0.5262 0.5263 0.5264 0.5265
21.0 0.5266 0.5267 0.53268 0.,5269% 0.5270 0.5271 0.5272 0.5273 0.5273 0.5274
22.0 0,5275 0.5276 0,5276 0.5277 0.5277 0,5278 G.5279 0.5279 0.5280 0.5280
23.0 0.5281 0.5281 0.5281 0.5282 0.53282 0©.,5283 0.5283 0.5283 0.5283 0.5284
24.0 0,5284 0.5284 0.5284 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285
25,0 0.,5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285 0.5285
26.0 0.5285 0.5284 0.3284 0,5284 0.5284 0.5284 0,5284 10,5283 0.5283 0.5283
27.0 0.5283 0.5282 0.3282 0.5282 0.5281 ©0.5281 0,5281 0.5280 0.5280 0.5280
28.0 0.5279 0,527% 0.5278 0,5278 0.5277 0,5277 0.5277 0.5276 0.5276 0.5275
29.0 0.5275 0.5274 0.,5274 0,5273 0.5273 0.5272 0.,5272 0.5271 0.5270 0.5270
30.0 ©.5269 0.526% 0.5268 0.5267 0.5267 0,5266 0.5266 0.5265 0.5264 0.5264
T* 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
36. 0.5269% 0.5263 0.5256 0,5249 0.5241 0.5232 0.5223 0.5214 0.5205 0.5195
40. 0.5186 0.5176¢ 0.5166 0,5156 0.5146 0.5135 0.5125 0.5115 0.5104 0.5094
50. 0.5084 0.5073 0.5063 0.5053 ©.5042 0.5032 0.5022 00,5012 00,5002 0.4992
60. 0.4982 0.4972 0,4962 0,4953 0.4943 0.4933 0.4924 0,4914 0.4905 0.4896
70, 0.4887 0.4877 0.4868 0.4859 0.4850 0.4841 $,.4832 0.4824 0.4815 0.4806
80. 0.4798 0.4789 0.4781 0.4773 0.4764 00,4756 0.4748 0.4740 0.4732 0.4724
20. 0.471e 0.4708 0.4701 ©.4693 0.4685 0.4678 0,4670 0.4663 0.4655 0.4648
100. 0.4641 0.4633 ©0.4626 0,4619 0.4612 0.4605 0.4598 0,4591 0.4584 0.4578

I* 0.0 10.0 20.0 30.0 4¢.0 50.0 60.0 70.0 80.0 90.0
100. 0.4641 0.4571 0.4506 0.4446 00,4389 0,4337 0.4287 0.4240 0.4196 0.4154
200. 0.4114 0.4076 0.4040 0.4006 0.3973 0,3942 0.3%11 0.3882 0.3854 0,3827
300. 0.3801 0.3776 0.3752 0.3729 0.3706 0.3684 0.3663 0.3642 0.3622 0.3602
400. 0.3584 0.3565 0.3547 0.3530 0,.3513 0.3496 0.3480 0.3464 0,.3449 0.3433
500. 0.3419 0.3404 0.3390 0,3376 0.3363 0.3350 0.3337 0.3324 0.3311 0.3299
€600, 0.3287 ©0.3275 0.3264 10,3252 (.3241 0.3230 0.3220 0,3209 0.3199 0,3188
700, 0.3178 0.3168 0.315%9 0.3149 0.3140 0.313¢ ©,3121 0.3112 0.3103 0.3095
800. 0.3086 0.3078 0,3069 0.3061 ©0.3053 0©.3045 0.3037 0.3029 0.3021 0.3014
900. 0.3006 0.2999 0.2991 0.2984 0.2977 0.,2970 0.2963 0.2956 0.2949 0.2%43



Reduced Second Virial Coefficient for the Sutherland Potential (Exponent 6)

B*(T*)=B\E—T)= 1-3 __._..._l—j, T*:%_
0 i=1j1(6f - )T
B*{0.10)= -1338.143
T* 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.9¢
0.0 -23.3084 -6.8154 -3.4289 -2,0688 ~1,3452 -0.8975 -0,5934 -0.3735
1.0 -0.2070 -0.0766 ©0.0283 0.1146 0.1868 0.2481 0.30C8 0,3465 0.3867 0.4222
2.0 0.4538 0.4821 ©.5076 0.5307 0.5518 0.5710 0.5887 0.6050 0.6200 0.6333
3.0 0.6468 0.6589% 0.8701 0.6807 0.6%06 0.6999%9 0,708B6 0.716% 0.7247 0.7320
4.0 ©0,7390 0.7457 0.7520 0.7580 0,7637 0.7692 0.7744 0.779%94 0.7841 ¢£,7887
5.0 0.7931 0.7973 0.8013 0.8052 0.8089% 0.8125 0.815% 0.8192 0.8225 0.8256
6.0 0.8285 0.8314 0.8342 0.8369 0.8396 0.8421 0.8445 0.8469% 0.8492 0.8515
7.0 0.8536 0.8558 0.8578 0.8598 0.8617 0.8636 0.8655 0.8672 0.8690 0.8707
8.0 0.8723 0.B739 0.8755 0.8770 0.8785 0.8800 0.8814 0.8828 0.83842 0.88535
9.0 0.8868 0.8881 0.88%3 0.8905 0.85%17 0.8929 0.8940 0.8951 0.8962 0.8373
10.0 0.89%83 0.8%93 0.9003 0.9013 0.9%023 0.%032 0.2041 0.9051 0.9060 0.90868
11.0 0.9077 0.9085 0.9%9094 0.9102 0.9110 0.9118 ©.92125 0.9133 0.9140 0.9148
12.0 0.9155 0.9162 0.9%169 10,9176 0.9183 0,918% 0.81%6 0.9202 0,.9208 0.9215
13.0 0.9221 0.9227 0.9233 0.9239 0.%244 10,9250 ©.9256 0.9261 0.9266 0.9272
14.0 0.9277 0.9282 0.9287 0.9292 0.9297 0.9302 ©.9307 0.9312 0.9317 0.9321
15.0 ©0.9326 0.9330 0.9335 0.9339 0.%344 0.9348 0.9352 0.9356 0.9360 0.9364
16.0 0.9368 ©0.9372 0.9376 0.9380 0.9%384 10,9388 0.93%1 0.9395 0,.9399 0,9402
17.0 ©.9406 0.9409 0.9413 0.9%416 0.9420 0.9423 0.9426 0.9430 0.9433 0.943%
18.0 0.943% 0.9442 0.9445 0.9449 0.9452 0.9455 0.9457 0.9460 0.9463 0.9466
12.0 0.946% 0.9472 0.3%475 0.9477 0.9%480 0.9483 0.9485 0.9488 0.9491 0.9493
20.0 0.949%6 0.9498 0,9501 0.9503 0,9506 0.95068 (.9511 0.9513 0.9515 0.9518
21.0 0.9%520 0.9522 0.9525 0,9527 0.8529 0.9531 ©.9533 0.9536 0.9538 0.9540
22.0 0.9542 (.9544 0.9546 0,9548 (0.9550 0.9552 0.9554 0.95586 0.9558 0.9560
23.0 0.9562 0.9564 0.9566 0,9568 0.9570 0.9571 10,9573 0.9575 0.9577 0.957¢%
24.0 0.9580 0.9582 0.9584 0.9586 0.9587 0.9582 0.9591 0.9592 0.9594 0,9596
25.0 0.9597 0.9599 0.9601 0.9602 0.9604 0.%605 ©.9607 0.9608 0.9610 0.9611
26.0 0.9613 0.9614 0.9616 0.9617 0.9619 0.9620 0.9622 0.9623 0.9625 0.9626
27.0 0.9627 0.9629 0,9630 0.9631 0.9633 (.9634 0.9635 0.9637 0.9638 0.9639
28.0 0.9641 0.9642 0,9643 0.9645 0.9646 0.9%647 0.9648 0.9650 0.9651 0.9652
29.0 0.9653 0.9654 0.9656 0©.9657 0.9658 0.9659 0.9660 C.9661 0,9663 0.9664
30.0 0.9665 0.9666 0,3667 (.9%9668 0.9669 0.9670 0.%671 0.9672 0.9674 D.9675
T* 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 2.0
30. 0.9665 0.9676 ©.3686 0,9695 0.9704 0.9713 0,9721 0.9%729 0.9736 0.9742
40. 0.9749 0.9755 0.3761 0.9767 0.9772 0.9777 0.9782 0.9786 0.9791 0.9795
50. 0.9799 0.9803 ©0.3807 0.9811 0.9814 0.9818 0.9821 0,982¢ 0.9827 0.9830
€60. 0.9833 0.9836 0.2838 0.9841 0.9843 0.9846 0.9848 0.9850 0.9853 0,9855
70. 0.9857 0.9859 0.23861 0.9863 0.9865 0.9866 0.9868 0.9870 0.9872 0.9873
80. 0.9875 0.9876 0.3878 0.9879 0.9881 0.9882 0.9883 0.9885 0.9886 0,9887
90. 0.9889 0.98%0 0.3891 0.9892 0.9893 0.9895 0.9896 0.9897 10,9898 0.9899
100. 0.9900 0.9%01 0.3%02 0.9903 0.9904 0.9905 0.9906 0.9906 0.9907 0.9908
T* 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
100. 0.9900 0.9909 0.23917 0.9923 0.9928 0.9933 0.9937 0.9941 0.9944 0.9947
200. 0.9950 0.9952 10,9955 0.9956 0,9958 0.9960 0.9962 0.9963 0.9964 0.9965
300. 0.9967 0.9968 0.,9969 0.9970 0,9971 0.9971 0.9972 0.9973 0.9974 0,9974
400. 0.9975 0.9976 0.2976 0.9977 0.9977 0.9%978 0.9978 0.9979 0.9979 00,9580
500. 0.9980 0.9980 0.3981 0.9981 0.9981 00,9982 0.9982 0.9%82 10,9983 0.9983
600. 0.9983 0.9%84 (.9984 0.9%984 0.9984 10,9985 0.9985 0.998% 0.9985 0.9986
700. 0.9986 ©0.9986 0.3986 0.9%9986 0.9986 0.9987 0.99%987 0.9987 0.9987 (.99387
800. 0.9987 0.9988 0.3%88 G(.9%3%88 0.5988 10,9988 0.9988 ©.998% 0,9989 0.9989
900. 0.9989 0.99%89 0.2989 0.998% 0.998% 0.998% 0.%9%0 0.99%0 0.99390 0.9990



Statistical Thermodynamics Examination
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(i)

For a statistical-mechanical system that can assume singly-degenerate discrete energy
levels Ey, k = 1,2,..., show that the expressions for the average energy

ap
and
o _BEk
_ e
<E> = zEk 7

are equivalent, where the partition function is defined by

= BE
Z=ZGB“ and szl_T

k=0

(3)
Demonstrate the equivalence of the definitions
S$=-k)PE)MPE) and S=ilnz+Z
k=0
e

where P(E) = 7

(5)

An hypothetical system of noninteracting particles can distribute themselves among
three states with energies -, 0, and +&. Assuming that pe = 1, calculate:

the particle partition function;

the probability of occupation for each of the thrée states;
the average energy per particle in units of 1/ = AT;

the entropy in units of £. :

How would you expect your answers to differ qualitatively if the value e = 0.01 were
selected instead? (No calculations are required. )
(15)

The Maxwell-Boltzmann distribution functon for the speeds of molecules of mass m is

. 2, m 32 3 mv?
o) = 4nv? G exp(- 22
Use this to estimate the probability that 2 methane molecule (molar mass 16.04 g/mol)
has a speed in the range (500 + 0.5) m/s (i.e., between 499.5 and 500.5 m/s).
(3)

Elementary textbooks on general chemistry frequently confuse the mean speed and
root-mean-square speed of molecules in a gas. State how the mean- and mean-square-
speeds can be defined in terms of integrals involving the function n(v), and evaluate
these integrals by application of the Gaussian Integral formulae




(d)
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(ii)

(iii)
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where a > (.
(10)

According to the quantum theory, the translational energy levels available to a particle
of mass m in a rectangular box of dimensions a, b, and ¢ are

B
€ nn =_(_+_+—)
123 8m a2 b2 C.2

By use of the Gaussian Integral formula

[ g o L [E
G, = Je dx = V@
0
show that the translational partition function for such a particle is

_ QamkTy"”
o = 3

h

z V, where V = abc.

(5)
In the classical and quantum-mechanical treatments of the distribution of translational
energies in a perfect gas, the linear dimensions of the container appear in the partition
function as the product (i.e., as the volume of the container). In the quantum treatment,
however, the dimensions of the container exert another effect on the range of
configurations available to the particles.

Describe how this effect operates, and hence comment on the assumption used in part

(i).
(2)
The rotational constant of the HF molecule is

B = 20.9560 cm™.

Convert this to the equivalent energy in J, and hence evaluate 8,,;, the characteristic
rotational temperature. From the accompanying table of values of the function

] C]
2(2.]+ e x’(J”), where X = %ﬁ
J=0

evaluate the rotational partition function for HF at 251.2 K, and compare this with what
would be obtained by use of the approximation

¥ XU+ [ =T +1)
2J + 1e ~ 12+ e dl
J=0 0

=1
X




Values of Fundamental Constants:

Boltzmann’s Constant
Planck’s Constant:
Avogadro’s Number:

Velocity of Light:

.
.

Rotational Partition

X 0.00 0.01
0.0 100,.3340
0.1 10.3401 9.4317
0.2 5.3472 5.1098
0.3 33,6879 3,5811
0.4 2,8623 2,8021
0.5 22,3703 2.3319
0.6 2.,0435 2.0190
0.7 1.8164 1.7972
0.8 1.6473 1.6329
0.9 1.5186 1.5075
1.0 1.4184 1.4097
1.1 1.3392 1.3322
1.2 1.2759 11,2703
1.3 1.2249% 11,2203
1.4 1.1836 1,179%

w
o

H R P H R RRRPRPRNN WS ®

k

Function

1.38066 x 10-23 J K-1

6.62608 x 10-34J s
Ny =6.02214 x 1023 mol-!

= < +1)
Bt = DT+ D™D,

0.02

.3347
.6749
.8241
.4811
.7448
L2951
L9935
.17185
.6188
. 4966
.4011
.3254
.2648
.2159
1763

J=0

0.03
33.6687
8.0345
4.,6972
3.3871
2.6902
2.259¢6
1.9688
1.7604
1.6051
1.4860
1.3927
1.3187
1.2594
1.2116
1.1727

T I U C I VRN SR R |

0.04

L3360
.4858
.>168
.2988
.6382
L2255
.9448
7429
.5918
.4756
.3846
L3122
.2542
L2073
.1693

0.05
20.3367
7.0103
4.3508
3.2155
2.5885
2.1927
1.9217
1.7258
1.5788
1.48655
1.37686
1.3058
1.249%0
1,2031
1.1659

¢ =299793 x 108 m s-1.

x = emr.
T

.06 0.07
17.0040 14,6238
6.5943 6.2274
4,1977 4,0560
3.1369 3.0626
2.5410 2.4955
2.1611 2.1306
1.8993 1.8776
1.7092 11,6931
1.5661 1.5538
1.4556 1.4460C
1.3688 1.3611
1.2996 1.2935
1.2440 1.2391
1.1991 1.1951
l1.1626 1.1593

.08
12.8387
5.9013
3.9245
2.9923
2.4520
2.1012
1.8565
1.6774
1.5418
1.4366
1.3537
1.2875
1.2342
1.1911
1.1562

= T SR S U U S L B

0.09

L4505
.6096
L8021
.9256
L4103
L0729
.8361
.6622
L5301
L4274
.3464
L2816
L2295
.1873
L1530
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494 CRC Standard Mathematical Tables and Formulae

THE NORMAL PROBABILITY FUNCTION
AND RELATED FUNCTIONS

This table gives values of:
a)} f(x) = the probability density of & standardized random variable

- ...I..I..IHII Palls

Viar

For negative values of z, one uses the fact that f{ -z) = f(z).
b) F(z) = the cumulative distribution function of a standardized normal random variable

* 1
= — L}
.\ll Vvar

. For negative values of z, one uses the _.m_wor..:uzﬁ. F(=z) = 1 - F(x). Values of z corre-

sponding to s few special values of F(z) are given in a separate table following the main
table. (See page 560.) .

F{z}

1= F(x)

¢) f(z) = the first derivative of f(z) with respect to z

--gRt e
d) f"(x) = the second derivative of f(z) with respect to z
- ﬁln..a\l..mlﬂc i = (z* ~ 1f(2)

e) f’{x) = the third derivative of f(z) with respect to z

- ulu.»\nﬂh.ﬁt. = (32 - 29f(z)

.3 Ji*(z) = the fourth derivative of f(z) with respect to ¥

= 3t = (o - 0+ )

Probability and Staristics 495

It should be noted that other probability integrals can be evaluated by the use of
these tables. For example,

. ]
()
where erf va represents the error function sescciated with the normal curve.
To evaluate erf (2.3) one proceeda as follows: anm %ﬂ - 2.3, one finds

z - (2.3)(+/2) = 3.25. In the entry opposite z = 3.25, the value 0.9994 i» given. Subtract-
E"cwmgoo from the tabular value, one finds the value 0.4994. Thus erf (2.3) = 2(0.4804) =
0. 5 :




496 CRC Standard Mathematical Tables and Formulae Probability and Statistics 497
NORMAL DISTRIBUTION AND RELATED FUNCTIONS NORMAL DISTRIBUTION AND RELATED FUNCTIONS
4 F{x) 1 — F{z) fir) Sz} PN Sl Cfiix) z Fizy | 1 =F) fz) Jrix) Pl t)] Pl )] S (x)
.00 L5000 . 5000 .398% - . 0000 - 3089 - 0000 1.1968 - 50 6015 . 3085 .3521 - .1760 - 2641 4841 .5501
.01 5040 4960 3989 - . 0040 ~ .3989 .0120 1.1965 -51 - 8850 -3050 . 3503 ~. 1787 - .2502 4895 5279
02 5080 4920 3089 — .QUBO0 - 3987 0239 1 1986 .52 0985 .3015 . 3485 - 1812 -~ . 3543 o 4947 . 5058
.03 5120 4880 3988 -.0120 — 3984 0359 1.1941 -83 JToe .8 . 3467 — . 1837 - . 2493 4986 | 4831 -
. .04 .5160 L4840 2088 - 0159 - 3080 0478 | 1.1820 - e L - 2948 -3448 - .1862 —- . 2443 - 5043 . 4605
.05 5190 L4801 .3984 - .0199 — 3975 0507 1.1864 .35 .7088 .2912 L3429 ~ . 1888 - .2302 . 5088 L4378
.08 .5239 4781 .3932 - .0239 - 3968 0718 1.1861 - 88 -7123 - 2877 -3410 —-.1920 - 2341 .5131 L4150
.07 5279 4721 3980 — . 0279 — 3960 . 0B34. I 1822 . 57 L7157 2843 3301 —~.1933 - 2289 5171 3821
08 . .531% . 4681 .3077 -.0318 - 3951 0052 1.1778 .58 7190 ¢ 2810 .3372 ~.1958 - 2238 . 5209 .3091
.c8 . .53% . 4641 3973 ~.0358 | - 3941 .1070 1.1727 80 1224 2778 - 3852 - . 1978 — 2185 5245 .3461
10 5398 L4602 .3970 - 0387 -.3930 ] 1187 1.1671 .80 7957 .2743 8332 | - 1000 ~—.2133 | 5278 .a231
11 5438 " 4562 3065 — 0436 — 3017 .1303 1.16090 - -8l .7391 2709 .3312 - . 2020 - 2080 5308 . 3000
.12 5478 4822 L3061 ~ 0475 |7 - . 3004 L1410 1. 1541 . .62 . 7324 .2678 3202 - . 2041 - . 2027 .5338 L2770
13 | 8517 .4483 .3956 - 0514 - .3889 1534 1 1468 . 83 7387 . -2643 .3271 - .2081 —-.1873 .5385 . 2539
.14 |- 5557 4443 3951 |, —.0553 | —.3873 | 1848 1.1389 : 84 7380 2011 3251 - . 2080 - 1019 5389 . L2300
.15 - .5508 4404 3045 =~ .0592 |- - 3856 1762 1.1304 .86 .7422 2578 -3230 —- . 2000 - . 1865 .5411 L2078
.18 L5836 4364 3538 | —.0630 :| -— 3838 (1874 1.1214 ) .88 . TAS4 .2548 .3200 -.ms - 1811 . 5431 L1849
17 5675 4325 .3932 - 0668 ~ 3819 . 1986 1118 : 67 L7486 .2514 .3187 -.2138 - .1757 8448 .1620
.18 5714 .4286 3025 | - 0707 - .3798 2097 1.1017 - .88 7817 . 2483 _3168 —-.2152 - 1702 5403 .1391
19 . .5783 L4247 L3018 - . 0744 - 3771 2206 1.0911 .69 L7549 2451 .314¢ —-.2170 —. 1847 .5476 1184
.20 5763 4207 .3910 = 0782 — 3754 2315 1.0789 .70 7580 . 2420 .3128 -.2186 ~ . 1503 .5486 L0037
.21 . 5832 4168 .3902 ~ 0820 —.3730 2422 1 0682 .71 .7611 . 2389 .3101 —.2201 —~.1538 . 5495 0712
.22 . 6871 L4129 .3894 —~ 0857 - 3706 .2529 1.0560 : .72 7842 .2358 .3079 —.2217 - .1483 . 5501 0487
.23 5910 .4090 . 3885 - 0894 — 3650 . 2634 1.0434 i .73 .7673 .2327 . 8056 —-.2231 —.1428 5504 .0z8s
.24 (5948 4052 L3876 ~.0930 - 3653 - 2737 10302 . . .74 7704 2208 .3034 —.2245 -.1373 .5508 . 0043
.25 5887 L4013 3887 - . 0967 — .3625 . 2840 1.0185 .75 7734 .2200 .3011 ~ 2250 -.1318 . 3505 ~.0176
.28 6028 L3974 L3857 —.1003 - 3598 .2041 10024 .76 .T784 .2238 . 2089 -.2271 - .1262 . 5502 ~.0304
.27 . .6064 3936 3847 =, 1030 | -~ .3366 -3040 0 9878 . ] .77 7704 .2206 .2066 ~ 2284 - 1207 5497 — o811
.28 .8103 .3807 .3836 - 1074 —.3535 3138 o.9727 .78 .7823 .2177 . 2043 - 2206 -.1183 5480 —.0825
.29 6141 .3859 3828 | - 1109 - 3504 .3235 0.0572 .7 .. 7852 (2148 .2920 - .2307 —.1088 5481 -.1037
.30 6179 .3821 .3814 —.1144 —.3471 .3330 9413 .80 . 7881 L2897 ~.2318 - .1043 . 5489 — 1247
.81 (6217 3783 .3802 -.n79 — 3437 3423 .9250 .8 7910 L2874 - 2328 —.0988 L5458 - 1458
- .82 (8255 L3745 L3790 -, 1213 — 3402 3515 .$0B2 .82 .7930 . 2850 —.2337 ~ 0934 .5440 - . 1080
.33 .6203 .8707 .a778 — 1247 — 3367 .3605 | 8810 .88 .7087 .2827 - .2346 - .0880 L5423 —.1882
.34 .8331 .3860 .3763 —.1280 - 3330 .3693 .8738 .84 .7905 .2803 - 2355 ~ . 0825 .8403 — .2083
.88 .6368 .9632 .3752 —-.1313 -~ .3293 3779 .8556 .BS .8023 .2780 ~.2203 —.07171 .5381 —-.2200
.30 . 6408 .3594 .3739 —.1346 - 3256 . 3864 8373 .86 .8051 .2756 ~.2370 - 0718 .5358 —.2458
.37 . 6443 .3557 3725 ~ 1378 - .3218 3047 .8186 87 5078 2732 - 2877 ~ . 0664 .5332 ~. 2648
.38 . 6480 .3520 .3712 — 1410 -~ 3176 .4028 7008 .88 .5108 .2709 - 2384 — . 0811 . 8308 —.2835
.39 .8517 .3483 .3697 — 1442 | - .3135 L4107 7803 .89 .B133 2685 - 2389 ~ 0558 .5278 -.3021
.3683 —.1473 - 3004 4184 7607 .90 8159 . 2681 ~.2305 - .0508 5248
. 3668 -~ 1504 ~ 3051 4250 7408 .ot .8188 . 2037 -
.3653 — 1534 | . . 4332 . 2013 -
.3637 . PP . 4403 .2589 -.
.3621 . . 4472 2588 -,
.3605 .2541 -
.3589 .2518 -
.3572 2402 -
3585 . 2488 -
¥ 2444 | -
2420 © | - .
kl




NORMAL DESTRIBUTION AND RELATED FUNCTIONS

NORMAL DISTRIBUTION AND RELATED FUNCTIONS

x Fiz) I - F(x) Jix} S frin [ (x) FOd )]
1.00 . B413 1587 L2420 — 2420 0000 4839 — . 4839
1.0 5438 .1562 .23968 - 2420 0048 4700 — . 4983
1.02 . 8481 1539 .2371 ~ 2419 0086 4740 —.5122
1.03 8485 L1515 2347 — . 2418 0143 4888 — . 5257
1.04 . 8508 . 1492 .2323 - 2418 0190 4635 - . 5389
1.05 .8531 1489 2299 - . 2414 0238 4580 —. 5518
1.08 . 8554 1446 (2275 -~ . 2411 0281 4524 - . 563¢%
1.07 (8577 1423 ..2251 — 2408 . 0326 4467 ~.57%8
1.08 . 8509 . 140 227 — . 2405 0371 4400 - .5873

4 1.00 8621 1379 .2203 - . 2401 0414 4350 — . 5084
© 1106 | .BB43 .1357 L2179 —.2306 0458 4200 — . 8091

¥ 1.11 |- .86685 .1335 .2185 —.2392 0500 4228 —.6193
1.12 |* .8688 L1314 .2131 — 2386 .0542 4166 — . 8292

\ 1.13 .8708 .1292 .2107 - 2381 - 0583 4102 - . 0388
1.14 8720 .1271 . 2083 -~ 2375 0824 4038 - . 8470

1.15 8749 L1251 . 2059 — .2308 0864 3973 - .6561

1.18 8770 .1230 .2036 - .2361 0704 3907 - . 6643

1.17 . 8780 .1210 2012 - .2354 742 3840 - .8720

1.18 8810 .80 1988 — 2347 Q780 .3772 - .6702

: 1.19 . 8830 L1170 . 1985 — . 233¢ .0818 L3704 —~ . 8861
1.20- . 8849 L1151 . 1942 —.2330 0854 .3635 - .0826

1.21 . 886D L1131 L1918 - .2322 -0890 . 3566 — . 6086
1.22 . 5888 .1112 . 1805 —. 2312 . 0926 3400 -, 7042
1.23 . 8907 L1003 L1872 -.2303 0980 3425 - . 7004
1.24 . Be25 L1078 . 1849 — . 2203 0894 .3354 —. 7141
1.25 - 8044 . 1056 .1828 -.2283 . 1027 .3282 - . 7183

1.28 .Bo62 . 1038 . 1804 - . 2273 . 1080 L3210 —.7224
1.27 .8980 .1020 1781 — 2002 . 1082 3138 - . 7250

1.28 87 .1003 L1758 - . 2251 1123 . 3085 - 7201

1.29 .9018 0985 L1738 - 2240 11158 .2992 —.73i8

1.30 . 9032 .09e8 1714 —.2228 L1182 2918 - . 7341

1.31 9040 0031 .1891 - 2218 1211 2845 —. 7381

1.32 . 9008 0034 . 1089 — . 124 1239 2771 - . 7378

1.33 . 9082 0R18 1647 - 2191 . 1287 2697 - . 7388

1.94 9099 .0e01 .1826 - .2178 1203 2624 - 7308

1.33. 9115 .0883 . 1804 - . 2165 L1319 . 2550

1.36 .9131 0880 . 1582 —.2152 L1344 L2478

1.37 147 .0853 . 1581 - . 2138 1389 L2402

1.38 .9182 .0838 1539 -.2125 1302 .2328

1.39 .77 .0823 1518 —.2110 L1415 . 2254

1.40 0192 0808 1497 -~ . 2008 1437 2180

1.41- .9207 0798 L1478 —.2082 L1450 2107
- 1.42 .9222 0778 1458 - . 2067 .1480 .2033

1.43 -9238 0704 . 1435 - .2052 . 1500 . 1960

1.44 .9251 0749 415 - .2087 L1510 . 1887

0735 L1304 -, 2022 . 1537 .1815
o1 1555 =.1742
) 1572 1470
1588 . 1589

1804 .1528

. 1487

& Fiz) 1 - Fiz) £iz) r@ £12) L(z) iz
1.50 8332 o868 .1208 ~ 1043 1819
1.51 9348 0855 1278 - 1927 -1038 ”mu..._“ z “ﬂu
1.52 8367 0643 .1257 - 1910 1847 a7 | - esaa
63 .92370 -0830 ‘1238 — 1804 1680 1248 | -—.es88
1.54 ~0382 .0818 1219 - 1877 -1872 1180 | ~.6881
1.58 9394 0606 1200 - 1860 1683
. . . | -,
1.3 9406 0594 ‘182 — 843 -169¢ 04 | - u“ww
5T 9418 .0582 .1183 — 1826 1704 o077 | —leess
1.8 9429 L0571 1143 — 1800 1714 o | - 8880
1.50 9441 _0559 27 ~ 1793 1722 0848 | - 8511
1.080 .Pe52 L0548 L1108 - 1778 1730
1.61 D463 0837 1082 - 1757 1738 ”u...."___“ - .nnu”
1.6 ‘o474 0526 [1074 — 1740 1748 0856 | —.0293
163 9484 _os18 |1087 - 1723 1781 0591 [ —.8218
. 9495 .0505 .1040 ~ 1708 1787 0529 | -—.e138
1.85 . 9505 0495 1028 1587 1702 .
. . - ) ode8 | -
1.8 9518 0485 -1008 — 1670 .1788 008 | - |.ﬂ..mw
Lo7 “9s25 0475 0989 - 1082 70 0349 | - .5891
L -9535 _0468 o873 — 1634 173 0200 | - 5808
8 ‘9545 0455 0987 - 1817 1778 0293 | - 5720
1.70 9554 0446 0840 1509
} . -. 1778 o1re | -
1.7 0564 _0436 ‘0926 - 1381 179 oia | e
w.wu 0573 0427 0909 — 1563 .1780 0088 | - 8483
_.qn 9582 ‘0418 -0893 - 1548 1780 0011 | —.5360
N 9501 0409 0878 —.1528 .1780 — 0042 | - 8287
1.7 9599 0401 0863 1500 1780
, . -. . —.000¢ | -.817
“.w“ .p808 . 0392 .0B48 ~ . 1492 L1778 -. 0148 i.“.wq“
1.7 9818 _0384 -0833 — 1474 rmr —.0108 | — 4088
1.78 9625 .0375 .0818 — 1487 177 —02e5 | —. «B87
. ‘9633 -0367 -0804 - 1439 ame | -loae | 4788
1.80 9841 0350 0790 1421 1769 r
. . - . — . 084
“.2 9649 -0351 .0775 ~ 1403 1768 |.uuh .
82 -9658 0344 “o761 — 1388 .1781 ~.0433
1.88 “o88s -0336 -0748 - 1208 1758 - 0477
. 9671 .0329 L0734 - 1381 ‘1781 - .0831
1.85 . 9078 0322 L0721 —.13%8
1.8 -0e36 0314 -0707 — 1316
1.87 9693 .0307 -0094 - 1298
1.88 960 -0301 .0881 ~ 1381
1.5 L9708 (0204 M. ] —.1204
1.90 9713 0287 0856 — 12
1.91 9719 0281 0044 |..§h
1.92 9728 ‘0274 .0832 - 1313
1.03 9732 -0268 -0820 — 1198
1.04 9738 “0262 _0808 - um
1.95 0596 -.1163
1.98 0584 -
198 48
98
1.99
200




NORMAL DISTRIBUTION AND RELATED FUNCTIONS
NORMAL DISTRIBUTION AND RELATED FUNCTIONS
N : = Fix) 1= Fn Hz) 1= Fad ] £y P
= F(z) 1~ Flz) =) Lz 1z} 17z} Seiz)
2.50 9038 . 0082 0175 — . 0438 0920 - 1424 L0800
2.00 913 0227 .0540 - .1080 .1620 - .1080 - 2100 28 [ w0 0080 0171 —.0420 0008 - . 1418 .0836
2.01 9778 0222 - 08290 .| —.1084 .1609 - 1108 - .2603 2.52 0041 | .o050 .0167 — . 0420 . 0892 —.1408 0871,
) 2.02 9783 .0217 0519 — . 1048 1508 -.1132 —.2508 2.53 9943 0057 .0163 -.0411 .0878 - 1309 L0005
- 2.03 .9788 .0212 0508 -.1082 . 1588 -.1157 -.2411 2.54 9048 0088 0158 —.0403 L0804 — . 1389 0937
2.04 9793 .0207 0498 -.1018 L1575 —.1180 —~.2318 . .
. 2.58 9948 0054 . 0188 - 0354 .0850 ~.1380 . 0008
3.05 9708 0202 0488 - . 1000 .1563 - .1203 - .2222 7.5 . Gu4B 0082 0151 —.0388 .0B38 —.1370 0998
2.08 . 9803 o7 D478 ~ 0088 L1550 —.1225 —-.2129 2.57 9949 L0051 0147 -~ .0377 0822 - .1380 L1027
2.07 9808 L0192 . 0468 - .0988 .1538 — 1245 —.2038 2 88 .9951 0049 [ .0143 —.0368 .0B09 —-.135%0 . 1054
2.08 .9813. .0188 0480 — 0054 .1528 ~ 1208 —-. 1048 2.5¢ 9952 0048 0139 - .0381 0790 —.1339 - 1080
2.09 o817 0183 0849 —~ 0930 L1813 — . 1284 —.1854
. 2.60 9983 0047 .0136 - .0353 .0783 - .1328 . 1108
2.10 .9821 0179 0440 - 0924 .1500 —-.1302 - 1765 2.81 . 0055 0045 0132 —.0345 .0T80 - 1317 L1129
311 .D826 L0174 0431 — . 0009 1487 - .1320 - .1678 3.62 9986 . 0044 .012¢ - .0338 L0758 - .1305 .1ls2
’ 2.12 . 9830 L0170 . 0422 — 0804 1474 -.1338 - .1588 2.83 9057 . 0043 0128 —-.0330 0743 - 1304 L1173
2.13 . 9834 .0186 0413 -~ 0870 . 1480 - 1351 - .1502 2.84 9059 . 0041 0122 ~.0333 .0730 - 1282 1194
2.14 .0838 .0182 L0404 — 0885 1446 - .1366 - 1416 . .-
: _ , 2.65 9960 0040 | 0118 ~.0316 0717 —.1270 1213 .
2.18 9842 0158 " .0890 — 0850 .1433 —.1380 - .1332 2-68 9981 0039 0118 — . 0309 .0708 —.1268 1231
2.18 9840 L0154 . 0387 — .0838 1419 - 1303 —.1249 2.87 9682 0038 .0113 ~.0302 .0892 -, 1245 1248
.17 -.9850 L0150 . 0878 ~ . 0822 .1405 —~ . 1408 —-.1187 2.88 8963 0037 |- .0110 —.0205 . 0880 —~.1233 | .1204
1.18 0854 .0146 .0371 — . 0808 L1391 —.1418 — .1088 2.0¢ o084 0038 o7 - 0288 0868 - .1220 -1279
2.18 | - .o857 | .ol43 .0363 — .00 1377 ~.14208 - . 1006 :
: 2.70 L9985 . 0035 0104 -~ . 0281 . 0658 -.1207 1293
2.20 .88l .0139 . 0385 - .0780 .1382 —.1438 - . 0027 2N 0088 0034 0101 - 0278 L OB44 - . 1194 . 1308
- 2.3 9804 .0138 . 0847 —.0v87 1348 . 1445 — . 0850 i 2.12 P967 .0033 . 0099 -.0200 .08332 -.1m (1317
2.22 . o888 0132 .0339 - . 0754 . 1333 - .1453 ~ . 0774 i 273 0088 . 0032 . 0008 - . 0202 . 08320 -.11688 .1328
2.23 | - 9871 L0129 . 0432 — . 0740 (1319 — . 1480 - 0700 ! 2.74 L9060 .0081 . 0003 —.0258 . 0808 — 1154 .1338
- 2.24 o875 . .0128 0328 | —.g7e7 L1804 — . 1487 —.0826 . :
) ) : : 2.75 %70 . 0030 L0001 —.0250 L0587 -.1141 1347
. 2.28 9878 L0122 0317 - 0714 L1289 -. 1473 ~.0554 2.78 9071 .0029 L0088 —.02¢4 .0585 -z .1886
2.26 9881 0119 . .0810 -.0701 1275 ~ . 1478 — 0484 277 9972 L0028 . 0088 —.0238 L0874 ~ 1114 .1368
Clg.aT 0884 . .o118 | . .0303 — . 0089 1260 —.1483 —.0414 2.78 0973 0027 0084 —.0233 . 0583 —-.1100 . 1369
2.28 . 9887 - .13 0297 — 0876 1245 — 1486 —.0348 2:7¢ W74 0026 0081 ] -.0237 | .0s82 ~.1087 L1378
2.29 .8890 .0110 0200 | - 0884 1230 —.1490 - .0279 ;
. 1 2.80 9974 .0026 0079 -.0222 0541 -.1073 . 1379
2.30 9898 0107 .0283 —~ .0832 L1215 - . 1492 -.0214 ’ 2.81 9075 0025 L0077 -.0216 .0831 - . 1050 .1383
- 2.31 . 9896 0104 0277 - . 0839 . 1200 —. 1404 - . 0150 2.82 278 0024 0078 - 0211 0820 —. 1045 .1386.
2.3 .98v8 .Q102 .0270 ~ 0628 1188 -~ . 1468 —.0088 , 2.83 WY .0023 0073 - . 0308 .0510 —.1081 1380
. 2.33 | .ee01 0009 L0264 —.0018 1170 ~.1458 - .0027 ; 284 w7 0023 .0071 - 0301 . 0500 —.1017 .1890
T 2.84 L9904 . 0096 . 0258 - . 0804 1158 — . 1498 .0033 i
: i - : 2.88 9978 .0023 0080 —.0198 L0490 —.1003 1301
. 2.35 . 9008 . 0004 L0252 — . 0803 (1ML — 1495 . 0092 ; 2.868 w0 .0021 0087 -.0191 .0480 — . 0000 L1391
. 2.38 | o009 .0091 L0348 —.0581 1128 — . 1494 L0149 | 2.87 (3] .0021 0085 - .0188 .0470 —. 0078 1391
2.37 011 1 oose L0241 - .0570 1111 — 1492 0204 ; 2.88 9080 .0020 0083 -.0182 . 0400 — 00832 . 1389
- 2.38 9918 . D087 .0235 —.0359 . 1098 - 1490 . 0258 2.9 9081 .0019 0081 -.0177 . 04512 —.0048 1388
. 2.39 016 0084 .0229 - .05¢8 .1081 — 1487 pait
- ’ 2.90 D44l - . 0034 . 1388
1.40 .18 . 0082 10224 — 0535 | .1088 - . 1483 .0362 2.91 0432 —.0020 1382
- 2.41 L9920 .0080 L0219 - 0527 .1051 — 1480 0412 2.92 0428 - .0p08 L1378
3.42 | 922 .po7s 0213 ~.0518 .1036 — . 1475 . 0481 2.9 (0414 — .0893 1374
. 2.43 9925 .0075 .0308 —.0508 1022 - 1470 0508 2 .04 . 0405 —.0870 . 1380
3.4 C.e927 - .0072 .0203 - (406 1007 — . 1485 . 0854
’ ; z.903 0800 - . 0088 . 1864
© 2,48 0290 .0071 .18 - . 0488 .02 -, 1458 . 0598 2.98 .0388 —.0852 1358
- 2.48 9031 . .07s —.1453 L0041 ‘ 2.97 .0370 - .0838 .1352
S ox.47 ' 0932 0983 - 1448 0683 - 2.98 .07 -.0825 1345
. 3.48 L9934 0949 - 1439 .0723 2.9 . 0383 —.0811 . 1387
 2.49 - .93 10935 —. 1432 0762 . ;
S i 3.00 0356 —.0198
2.50 9938 ©.00R0 - 1424 . 0800
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